The seasonal carbon and water balances of the Cerrado environment of Brazil: Past, present, and future influences of land cover and land use

Arielle Elias Arantes1, Laerte G. Ferreira1, Michael T. Coe2
1Federal University of Goiás, Image Processing and GIS Lab, Campus Samambaia, 74001-970 Goiânia, Goiás, Brazil
2The Woods Hole Research Center, 149 Woods Hole Rd, Falmouth, MA 02540, United States

Tài liệu tham khảo

Aragão, 2007, Spatial patterns and fire response of recent Amazonian droughts, Geophys. Res. Lett., 34, 10.1029/2006GL028946 Baccini, 2012, Estimated carbon dioxide emissions from tropical deforestation improved by carbon density maps, Nat. Clim. Change, 2, 10.1038/nclimate1354 Bandaru, 2013, Estimating crop net primary production using national inventory data and MODIS-derived parameters, ISPRS J. Photogram. Remote Sens., 80, 61, 10.1016/j.isprsjprs.2013.03.005 Batlle-Bayer, 2010, Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review, Agric. Ecosyst. Environ., 137, 47, 10.1016/j.agee.2010.02.003 Bonan, 2008, Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 320 Brandão, 2006, Crescimento Agrícola no Período 1999/2004: a Explosão da Soja e da Pecuária Bovina e Seu Impacto Sobre o Meio Ambiente, Economia Aplicada, 10, 249, 10.1590/S1413-80502006000200006 Braz, 2013, Soil carbon stocks under productive and degraded Brachiaria Pastures in the Brazilian Cerrado, Soil Sci. Soc. Am. J., 77, 914, 10.2136/sssaj2012.0269 Brossard, 2005, Conversão do Cerrado em Pastagens Cultivadas e Funcionamento de Latossolos, Cadernos de Ciência & Tecnologia, 22, 153 Buol, 2009, Soils and agriculture in central-west and north Brazil, Scientia Agricola, 66, 697, 10.1590/S0103-90162009000500016 Bustamante, 2012, Estimating greenhouse gas emissions from cattle raising in Brazil, Clim. Change, 115, 559, 10.1007/s10584-012-0443-3 Camargo, 1963, 75 Cerri, 2009, Brazilian greenhouse gas emissions: the importance of agriculture and livestock, Scientia Agricola, 66, 831, 10.1590/S0103-90162009000600017 Coe, 2009, The Influence of historical and potential future deforestation on the stream flow of the Amazon River – land surface processes and atmospheric feedbacks, J. Hydrol., 369, 165, 10.1016/j.jhydrol.2009.02.043 Coe, 2011, The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil, Biogeochemistry, 105, 119, 10.1007/s10533-011-9582-2 Coe, 2013, Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia, Philos. Trans. Remote Sens. Soc., 368 Costa, 2003, Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia, J. Hydrol., 283, 206, 10.1016/S0022-1694(03)00267-1 Costa, 2009, Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation, Int. J. Climatol., 30, 1970, 10.1002/joc.2048 Couto, 2010, Identificação de Áreas Prioritárias para Conservação da Biodiversidade e Paisagens no Estado de Goiás: Métodos e Cenários no Contexto da Bacia Hidrográfica, Revista Brasileira de Cartografia 1994 D’Almeida, 2007, The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution, Int. J. Climatol., 27, 633, 10.1002/joc.1475 Eiten, 1972, The Cerrado Vegetation of Brazil, vol. 38, 201 Eyre, 1963 Fearnside, 2009, Biomassa and greenhouse-gas emissions from land-use change in Brazil’s Amazonian “arc of deforestation”: the states of Mato Grosso and Rondônia, For. Ecol. Manage., 258, 1968, 10.1016/j.foreco.2009.07.042 Felfili, 2007, Floristic composition and community structure of a seasonally deciduous forest on limestone outcrops in Central Brazil, Revista Brasileira Botanica, 30, 611 Ferreira, 2003, Seasonal landscape and spectral vegetation index dynamics in the Brazilian Cerrado: an analysis within the Large-Scale-Biosphere-Atmosphere Experiment in Amazônia (LBA), Remote Sens. Environ., 87, 534, 10.1016/j.rse.2002.09.003 Ferreira, 2004, Assessing the seasonal dynamics of the Brazilian Cerrado vegetation through the use of spectral vegetation indices, Int. J. Remote Sens., 25, 1837, 10.1080/0143116031000101530 Ferreira, 2011, Equivalent water thickness in savanna ecosystems: MODIS estimates based on ground EO-1 Hyperion data, Int. J. Remote Sens., 32, 10.1080/01431161.2010.523731 Ferreira, 2012, Modeling landscape dynamics in the central Brazilian savana biome: future scenarios and perspectives for conservation, J. Land Use Sci., 8, 403, 10.1080/1747423X.2012.675363 Franco, 2005, Leaf functional trait of Neotropical savanna trees in relation to seasonal water deficit, Trees, 19, 326, 10.1007/s00468-004-0394-z Garcia, F.N., Ferreira, L.G., Leite, J.F., 2011. Áreas Protegidas no Bioma Cerrado: fragmentos vegetacionais sob forte pressão. In: Simpósio Brasileiro de Sensoriamento Remoto, Curitiba, PR, 2011. Galford, 2008, Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil, Remote Sens. Environ., 112, 576, 10.1016/j.rse.2007.05.017 Garcia-Montiel, 2008, Estimating seasonal changes in volumetric soil water content at landscape scales in a savanna ecosystem using two-dimensional resistivity profiling, Earth Interact., 12, 10.1175/2007EI238.1 Giambelluca, 2009, Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density, Agric. For. Meteorol., 149, 1365, 10.1016/j.agrformet.2009.03.006 Goodland, 1971, Physiognomic analysis of the Cerrado vegetation of Central Brasil, J. Ecol., 59, 411, 10.2307/2258321 Goward, 1985, North American vegetation patterns observed with the NOAA-7-advanced very high resolution radiometer, Vegetation, 64, 2, 10.1007/BF00033449 Guenni, 2002, Responses to drought of five Brachiaria species. I. Biomass production, leaf growth, root distribution, water use and forage quality, Plant Soil, 243, 229, 10.1023/A:1019956719475 Hayhoe, 2011, Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics, Glob. Change Biol., 17, 1821, 10.1111/j.1365-2486.2011.02392.x Huete, A.R., Saleska, S.R., 2010. Remote sensing of tropical forest phenology: issues and controversies. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Kyoto, Japan. Huete, 2002, Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote sens. Environ., 83, 195, 10.1016/S0034-4257(02)00096-2 Houghton, 2003, Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000, Tellus, 55, 378, 10.1034/j.1600-0889.2003.01450.x Houghton, 2012, Estimated carbon dioxide emissions from tropical deforestation improved by carbon density maps, Nature Clim. Change, 2 Jepson, 2005, A dissapearing biome? Reconsidering land-cover change in the Brazilian savanna, Geograph. J., 171, 99, 10.1111/j.1475-4959.2005.00153.x Jönsson, 2002, Seasonality extraction by function fitting to time-series of satellite sensor data, IEEE Trans. Geosci. Remote Sens., 40, 10.1109/TGRS.2002.802519 Jönsson, 2004, TIMESAT – a program for analyzing time-series of satellite sensor data, Comput. Geosci., 30, 833, 10.1016/j.cageo.2004.05.006 Klink, 2005, Conversation of the Brazilian Cerrado, Conserv. Biol., 19, 707, 10.1111/j.1523-1739.2005.00702.x Kummerow, 1998, The Tropical Rainfall Measuring Mission (TRMM) sensor package, J. Atmos. Ocean. Technol., 15, 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2 Lascano, 1991, Managing the grazing resource for animal production in savannas of tropical America, Tropic. Grassl., 25, 66 Lathuillière, 2012, Water use by terrestrial ecosystems: temporal variability in rainforest and agricultural contributions to evapotranspiration in Mato Grosso, Brazil, Environ. Res. Lett., 10.1088/1748-9326/7/2/024024 Li, 2015, Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass, ISPRS J. Photogram. Remote Sens., 102, 198, 10.1016/j.isprsjprs.2015.02.007 Loarie, 2011, Direct impacts on local climate of sugar-cane expansion in Brazil, Nat. Clim. Change, 10 Ma, 2013, Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect, Remote Sens. Environ., 139, 97, 10.1016/j.rse.2013.07.030 Marcuzzo, 2012, Chuvas no Cerrado da Região Centro-Oeste do Brasil: análise histórica e tendência futura, Atêlie Geográfico, 6, 112 Meirelles, 2011, Evapotranspiration and plant–atmospheric coupling in a Brachiaria brizantha pasture in the Brazilian savannah region, Grass Forage Sci., 66, 206, 10.1111/j.1365-2494.2010.00777.x Miranda, 1997, Fluxes of carbon, water and energy over Brazilian cerrado: an analysis using eddy covariance and stable isotopes, Plant, Cell Environ., 20, 315, 10.1046/j.1365-3040.1997.d01-80.x Miranda, 2014, Regional variations in biomass distribution in Brazilian savanna woodland, Biotropica, 46, 125, 10.1111/btp.12095 Mu, 2011, Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 10.1016/j.rse.2011.02.019 Mueller, C.C., 2003. Expansion and modernization of agriculture in the Cerrado – the case of soybeans in Brazil’s Center-West. Universidade de Brasília – Departamento de Economia. Nascimento, 2007, Canopy opennes and LAI estimates in two seasonally deciduous forests on limestone outcrops in Central Brazil using hemispherical photographs, Revista Árvore, 31, 151, 10.1590/S0100-67622007000100019 Oliveira, 2013, Large-scale expansion of agriculture in Amazonia may be a no-win scenario, Environ. Res. Lett., 8, 10.1088/1748-9326/8/2/024021 Paiva, 2007, Estoque de carbono do solo sob cerrado sensu stricto no Distrito Federal, Brasil, Revista Trópica, 1, 59 Palhares, 2010, Respostas fotossintéticas de plantas de cerrado nas estações seca e chuvosa, Revista Brasileira de Biociências, 8, 213 Pereira, 2011, Florestas Estacionais no Cerrado: Uma Visão Geral, Pesquisa Agropecuária Trop., 41, 446, 10.5216/pat.v41i3.12666 Potter, 2007, Net primary productivity of forest stands in New Hampshire estimated from Landsat and MODIS satellite data, Carbon Balance Manage., 2 Potter, 2009, Terrestrial carbono sinks in the Brazilian Amazon and Cerrado region predicted from MODIS satellite data and ecosystem modeling, Biogeosciences, 6, 937, 10.5194/bg-6-937-2009 Pimentel, R.M., 2012. Propriedades Físicas, Carbono e Nitrogênio do Solo em Sistemas Agropecuários. Master in Animal Husbandry, Universidade Federal de Lavras, Brazil. Pinto, 2014, Soil organic carbon stocks in a Brazilian Oxisol under different pasture systems, Trop. Grasslands-Forrajes Tropicales, 2, 121, 10.17138/TGFT(2)121-123 Rachid, 1947, Transpiração e sistemas subterrâneos da vegetação de verão dos campos cerrado de Emas, Boletim da Faculdade de Filosofia, 80, 37 Ratana, 2005, Analysis of Cerrado Vegetation types and conversion in the MODIS seasonal-temporal domain, Earth Interact., 9, 10.1175/1087-3562(2005)009<0001:AOCPAC>2.0.CO;2 Reed, 1994, Measuring phenological variability from satellite imagery, J. Veg. Sci., 5, 703, 10.2307/3235884 Rezende, G.C., 2002. Ocupação Agrícola e Estrutura Agrária no Cerrado: O Papel do Preço da Terra, dos Recursos Naturais e da Tecnologia. Embrapa (access in: 14.04.14). <http://www22.sede.embrapa.br/unidades/uc/sge/ocupacao_agraria.pdf>. Richards, P.W., 1969. Unpublished Report to R.S./R.G.S Brazil Expedition Committee. Rizzini, 1962 Rocha, 2002, Measurements of CO2 exchange over a woodland savanna (Cerrado sensu stricto) in southeast Brasil, Biota Neotropica, 2, 10.1590/S1676-06032002000100009 Rocha, 2009, Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil, J. Geophys. Res., 114, 10.1029/2007JG000640 Rocha, 2011, Detecção de desmatamentos no bioma Cerrado entre 2002 e 2009: padrões, tendências e impactos, Revista Brasileira de Cartografia, 63, 341 Rosa, 2013, Determinação da Produtividade Primária Líquida (NPP) de Pastagens na Bacia do Rio Paranaíba, Usando Imagens MODIS, GeoFocus, 13, 367 Ruhoff, A.L., Aragão, L.E., Collischonn, W., Rocha, H.R., Mu, Q., Running, S., 2011. MOD16: Desafios e limitações para a estimativa global de evapotranspiração. In: XV Brazilian Remote Sensing Symposium, Curitiba, Brazil, pp. 5124. Ruimy, 1994, Methodology for the estimation of terrestrial net primary production from remotely sensed data, J. Geophys. Res., 99, 5263, 10.1029/93JD03221 Running, 1988, Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates, Remote Sens. Environ., 24, 347, 10.1016/0034-4257(88)90034-X Sack, 2006, Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees, Ecology, 87, 483, 10.1890/05-0710 Sano, 2000, Assessing the spatial distribution of cultivated pastures in the Brazilian savanna, Pasturas Tropicales, 22 Sano, 2010, Land cover mapping of the tropical savanna region in Brazil, Environ. Monit. Assess., 166, 113, 10.1007/s10661-009-0988-4 Santos, 2003, Effects of fire on surface carbono, energy and water vapour fluxes over campo sujo savanna in central Brazil, Funct. Ecol., 17, 711, 10.1111/j.1365-2435.2003.00790.x Santos, 2004, High rates of net ecosystem carbono assimilation by Brachiaria pasture in the Brazilian Cerrado, Glob. Change Biol., 10, 877, 10.1111/j.1529-8817.2003.00777.x Silva, 2004, Carbon storage in clayey Oxisol cultivated pastures in the “Cerrado” region, Brazil, Agric. Ecosyst. Environ., 103, 357, 10.1016/j.agee.2003.12.007 Silva, E.B., Ferreira, L.G., Rocha, G.F., Couto, M.S.D.S., 2009. Taxas de desmatamento em Otto bacias do bioma Cerrado obtidas através de imagens índice de vegetação MODIS. In: XIV Brazilian Remote Sensing Symposium, Natal, Brazil, pp. 6241–6248. Silva, 2013, An spatial distribution of cultivated pastures in the Brazilidas no bioma Cerrado entre 1970 e 2006, Revista IDeAs, 7, 174 Soares-Filho, 2014, Cracking Brazil’s forest code, Science, 344, 363, 10.1126/science.1246663 Solano, R., Didan, K., Jacobson, A., Huete, A.R., 2010. MODIS vegetation indices (MOD13) user ́s guide. <http://tbrs.arizona.edu/project/MODIS/MOD13.C5-UsersGuide-HTML-v1.00> (accessed on 25.02.11). Solórzano, 2012, Perfil florístico e estrutural do componente lenhoso em seis áreas de cerradão ao longo do bioma Cerrado, Acta Botanica Brasilica, 26, 328, 10.1590/S0102-33062012000200009 Spracklen, 2012, Observations of increased tropical rainfall preceded by air passage over forests, Nature, 489, 10.1038/nature11390 Stickler, 2013, The Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales, Proc. Nat. Acad. Sci., 13 Tan, B., Morisette, J.T., Wolfe, E., Gao, F., Ederer, G.A., Nightingale, J., Pedelty, J.A., 2008. Vegetation phenology metrics derived from temporally smoothed and gap-filled MODIS data. In: International Geoscience and Remote Sensing Society, 2008. Vendrame, 2010, Fertility and Acidity Status of Latossols (oxisols) under pasture in the Brazilian Cerrado, An Acadêmica Brasileira de Ciência, 82 Wagle, 2015, Estimation and analysis of gross primary production of soybean under various management practices and drought conditions, ISPRS J. Photogram. Remote Sens., 99, 70, 10.1016/j.isprsjprs.2014.10.009 Wu, 2014, The potential of the greenness and radiation (GR) model to interpret 8-day gross primary production of vegetation, ISPRS J. Photogram. Remote Sens., 88, 69, 10.1016/j.isprsjprs.2013.10.015 Zhang, 2014, Improved maize cultivated area estimation over a large scale combining MODIS-EVI time series and crop phenological information, ISPRS J. Photogram. Rem. Sens., 94, 102, 10.1016/j.isprsjprs.2014.04.023 Zhang, 2003, Monitoring vegetation phenology using MODIS, Remote Sens. Environ., 84, 471, 10.1016/S0034-4257(02)00135-9 Zhang, 2012, Long-term detection of global vegetation phenology from satellite instruments, Phenol. Clim. Change, 10.5772/39197