The score after 10 years of registration of systematic review protocols

Kim van der Braak1, Mona Ghannad1, Claudia Orelio1, Pauline Heus1, Johanna Aag Damen1, René Spijker1, Karen A. Robinson2, Hans Lund3, Lotty Hooft1
1Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
2Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
3Section for Evidence-Based Practice, Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway

Tóm tắt

Abstract Background With the exponential growth of published systematic reviews (SR), there is a high potential for overlapping and redundant duplication of work. Prospective protocol registration gives the opportunity to assess the added value of a new study or review, thereby potentially reducing research waste and simultaneously increasing transparency and research quality. The PROSPERO database for SR protocol registration was launched 10 years ago. This study aims to assess the proportion SRs of intervention studies with a protocol registration (or publication) and explore associations of SR characteristics with protocol registration status. Methods PubMed was searched for SRs of human intervention studies published in January 2020 and January 2021. After random-stratified sampling and eligibility screening, data extraction on publication and journal characteristics, and protocol registration status, was performed. Both descriptive and multivariable comparative statistical analyses were performed. Results A total of 357 SRs (2020: n = 163; 2021: n = 194) were included from a random sample of 1267 publications. Of the published SRs, 38% had a protocol. SRs that reported using PRISMA as a reporting guideline had higher odds of having a protocol than publications that did not report PRISMA (OR 2.71; 95% CI: 1.21 to 6.09). SRs with a higher journal impact factor had higher odds of having a protocol (OR 1.12; 95% CI 1.04 to 1.25). Publications from Asia had a lower odds of having a protocol (OR 0.43; 95% CI 0.23 to 0.80, reference category = Europe). Of the 33 SRs published in journals that endorse PROSPERO, 45% did not have a protocol. Most SR protocols were registered in PROSPERO (n = 129; 96%). Conclusions We found that 38% of recently published SRs of interventions reported a registered or published protocol. Protocol registration was significantly associated with a higher impact factor of the journal publishing the SR and a more frequent self-reported use of the PRISMA guidelines. In some parts of the world, SR protocols are more often registered or published than others. To guide strategies to increase the uptake of SR protocol registration, further research is needed to gain understanding of the benefits and informativeness of SRs protocols among different stakeholders. Systematic review registration osf.io/9kj7r/

Từ khóa


Tài liệu tham khảo

Jamali D, Barkemeyer R, Leigh J, Samara G. Open access, open science, and coronavirus: mega trends with historical proportions. Bus Ethics. 2020.

Vicente-Saez R, Martinez-Fuentes C. Open science now: a systematic literature review for an integrated definition. J of Bus Res. 2018;88:428–36.

Tennant JP, Waldner F, Jacques DC, Masuzzo P, Collister LB, Hartgerink CH. The academic, economic and societal impacts of open access: an evidence-based review. F1000Res. 2016;5:632.

Munafo MR, Hollands GJ, Marteau TM. Open science prevents mindless science. BMJ. 2018;363:k4309.

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.

Krleza-Jeric K, Chan AW, Dickersin K, Sim I, Grimshaw J, Gluud C. Principles for international registration of protocol information and results from human trials of health related interventions: Ottawa statement (part 1). BMJ. 2005;330(7497):956–8.

Straus S, Moher D. Registering systematic reviews. CMAJ : Can Med Asso j = j de l'Asso med can. 2010;182(1):13–4.

Zarin DA, Keselman A. Registering a clinical trial in ClinicalTrials.gov. Chest. 2007;131(3):909–12.

Hoffmann F, Allers K, Rombey T, Helbach J, Hoffmann A, Mathes T, et al. Nearly 80 systematic reviews were published each day: observational study on trends in epidemiology and reporting over the years 2000-2019. J Clin Epidemiol. 2021;138:1–11.

Page MJ, Shamseer L, Tricco AC. Registration of systematic reviews in PROSPERO: 30,000 records and counting. Syst Rev. 2018;7(1):32.

Siontis KC, Hernandez-Boussard T, Ioannidis JPA. Overlapping meta-analyses on the same topic: survey of published studies. BMJ. Br Med J. 2013;347.

Stewart L, Moher D, Shekelle P. Why prospective registration of systematic reviews makes sense. Syst Rev. 2012;1:7.

Allers K, Hoffmann F, Mathes T, Pieper D. Systematic reviews with published protocols compared to those without: more effort, older search. J Clin Epidemiol. 2018;95:102–10.

Sideri S, Papageorgiou SN, Eliades T. Are orthodontic systematic reviews registered a priori in PROSPERO? J Orthod. 2017;44(4):249–55.

Rombey T, Doni K, Hoffmann F, Pieper D, Allers K. More systematic reviews were registered in PROSPERO each year, but few records’ status was up-to-date. J Clin Epidemiol. 2020;117:60–7.

Booth A, Mitchell AS, Mott A, James S, Cockayne S, Gascoyne S, et al. An assessment of the extent to which the contents of PROSPERO records meet the systematic review protocol reporting items in PRISMA-P. F1000Res. 2020;9:773.

Ge L, Tian JH, Li YN, Pan JX, Li G, Wei D, et al. Association between prospective registration and overall reporting and methodological quality of systematic reviews: a meta-epidemiological study. J Clin Epidemiol. 2018;93:45–55.

The prevalence of recommended research practices in contemporary environmental health systematic reviews [Internet]. 2022 [cited 01-02-2020]. Available from: https://osf.io/j2d5v/. https://doi.org/10.17605/OSF.IO/J2D5V.

Dos Santos MBF, Agostini BA, Bassani R, Pereira GKR, Sarkis-Onofre R. Protocol registration improves reporting quality of systematic reviews in dentistry. BMC Med Res Methodol. 2020;20(1):57.

Tsujimoto Y, Tsujimoto H, Kataoka Y, Kimachi M, Shimizu S, Ikenoue T, et al. Majority of systematic reviews published in high-impact journals neglected to register the protocols: a meta-epidemiological study. J Clin Epidemiol. 2017;84:54–60.

Page MJ, Shamseer L, Altman DG, Tetzlaff J, Sampson M, Tricco AC, et al. Epidemiology and reporting characteristics of systematic reviews of biomedical research: a cross-sectional study. PLoS Med. 2016;13(5):e1002028.

Assessing the proportion of prospectively available systematic review protocols and the databases or repositories used by authors for registering or posting their protocol [Internet]. 2021. Available from: https://osf.io/9kj7r/. https://doi.org/10.17605/OSF.IO/TSUF9.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. J Clin Epidemiol. 2021;134:178–89.

Murad MH, Wang Z. Guidelines for reporting meta-epidemiological methodology research. Evid Based Med. 2017;22(4):139–42.

Lee E, Dobbins M, DeCorby K, McRae L, Tirilis D, Husson H. An optimal search filter for retrieving systematic reviews and meta-analyses. BMC Med Res Methodol. 2012;12.

Thomas J, Graziosi S, Brunton J, Ghouze Z, O'Driscoll P, Bond M. EPPI-Reviewer: advanced software for systematic reviews, maps and evidence synthesis. London: UCL Soc Res Ins: EPPI-Centre Software; 2020.

Stefanie Haustein TDB, Rodrigo Costas. When is an article actually published? An analysis of online availability, publication, and indexation dates. 2015.

Support for PROSPERO [Available from: https://www.crd.york.ac.uk/PROSPERO/#aboutpage.

Predicting questionable research practices in randomized clinical trials [Internet]. 2018. Available from: osf.io/27f53.

Vinkers CH, Lamberink HJ, Tijdink JK, Heus P, Bouter L, Glasziou P, et al. The methodological quality of 176,620 randomized controlled trials published between 1966 and 2018 reveals a positive trend but also an urgent need for improvement. PLoS Biol. 2021;19(4):e3001162.

R Core Team. R. A language and environment for statistical computing. Vienna: R Found for Sta Comp; 2021.

Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.

Tawfik GM, Giang HTN, Ghozy S, Altibi AM, Kandil H, Le HH, et al. Protocol registration issues of systematic review and meta-analysis studies: a survey of global researchers. BMC Med Res Methodol. 2020;20(1):213.

De Angelis C, Drazen JM, Frizelle FA, Haug C, Hoey J, Horton R, et al. Clinical trial registration: a statement from the International Committee of Medical Journal Editors. Croat Med J. 2004;45(5):531–2.

Goldberg J, Boyce LM, Soudant C, Godwin K. Assessing journal author guidelines for systematic reviews and meta-analyses: findings from an institutional sample. J Med Libr Assoc. 2022;110(1):63–71.

Nagendrababu V, Duncan HF, Dummer PMH. International Endodontic Journal policy on mandatory prospective (a priori) protocol registration for clinical trials and systematic reviews. Int Endod J. 2021;54(10):1685–6.

Beller EM, Glasziou PP, Altman DG, Hopewell S, Bastian H, Chalmers I, et al. PRISMA for abstracts: reporting systematic reviews in journal and conference abstracts. PLoS Med. 2013;10(4):e1001419.

Nosek BA, Beck ED, Campbell L, Flake JK, Hardwicke TE, Mellor DT, et al. Preregistration is hard, and worthwhile. Trends Cogn Sci. 2019;23(10):815–8.

CJ CM. Chapter II: Planning a Cochrane Review. In: JPT H, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). Cochrane; 2021.