The roots of a new green revolution
Tài liệu tham khảo
Malthus, 1798
Godfray, 2010, Food security: the challenge of feeding 9 billion people, Science, 327, 812, 10.1126/science.1185383
Khush, 2001, Green revolution: the way forward, Nat. Rev. Genet., 2, 815, 10.1038/35093585
Gonzalez, 2009, David and Goliath: what can the tiny weed Arabidopsis teach us to improve biomass production in crops?, Curr. Opin. Plant Biol., 12, 157, 10.1016/j.pbi.2008.11.003
Xing, 2010, Genetic and molecular bases of rice yield, Annu. Rev. Plant Biol., 61, 421, 10.1146/annurev-arplant-042809-112209
Coudert, 2010, Genetic control of root development in rice, the model cereal, Trends Plant Sci., 15, 219, 10.1016/j.tplants.2010.01.008
de Dorlodot, 2007, Root system architecture: opportunities and constraints for genetic improvement of crops, Trends Plant Sci., 12, 474, 10.1016/j.tplants.2007.08.012
Hochholdinger, 2009, Genetic and genomic dissection of maize root development and architecture, Curr. Opin. Plant Biol., 12, 172, 10.1016/j.pbi.2008.12.002
Lambers, 2006, Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits, Ann. Bot., 98, 693, 10.1093/aob/mcl114
Lynch, 2007, Roots of the Second Green Revolution, Aust. J. Bot., 55, 493, 10.1071/BT06118
Reynolds, 2009, Raising yield potential in wheat, J. Exp. Bot., 60, 1899, 10.1093/jxb/erp016
Gewin, 2010, An underground revolution, Nature, 466, 552, 10.1038/466552a
Hammer, 2009, Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt?, Crop Sci., 49, 299, 10.2135/cropsci2008.03.0152
Pimentel, 1996, Green revolution agriculture and chemical hazards, Sci. Total Environ., 188, S86, 10.1016/0048-9697(96)05280-1
Drinkwater, 1998, Legume-based cropping systems have reduced carbon and nitrogen losses, Nature, 396, 262, 10.1038/24376
Benfey, 2010, Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research, Plant J., 61, 992, 10.1111/j.1365-313X.2010.04129.x
Oldroyd, 2008, Coordinating nodule morphogenesis with rhizobial infection in legumes, Annu. Rev. Plant Biol., 59, 519, 10.1146/annurev.arplant.59.032607.092839
Dodds, 2010, Plant immunity: towards an integrated view of plant-pathogen interactions, Nat. Rev. Genet., 11, 539, 10.1038/nrg2812
Bonfante, 2010, Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis, Nat. Commun., 1, 48, 10.1038/ncomms1046
De Smet, 2003, An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis, Plant J., 33, 543, 10.1046/j.1365-313X.2003.01652.x
Dello Ioio, 2008, A genetic framework for the control of cell division and differentiation in the root meristem, Science, 322, 1380, 10.1126/science.1164147
Gonzalez-Rizzo, 2006, The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti, Plant Cell, 18, 2680, 10.1105/tpc.106.043778
Ivanchenko, 2008, Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana, Plant J., 55, 335, 10.1111/j.1365-313X.2008.03528.x
Krouk, 2010, Nitrate signaling: adaptation to fluctuating environments, Curr. Opin. Plant Biol., 13, 266, 10.1016/j.pbi.2009.12.003
López-Bucio, 2003, The role of nutrient availability in regulating root architecture, Curr. Opin. Plant Biol., 6, 280, 10.1016/S1369-5266(03)00035-9
Gilroy, 2000, Through form to function: root hair development and nutrient uptake, Trends Plant Sci., 5, 56, 10.1016/S1360-1385(99)01551-4
Schiefelbein, 2009, The gene regulatory network for root epidermal cell-type pattern formation in Arabidopsis, J. Exp. Bot., 60, 1515, 10.1093/jxb/ern339
Péret, 2009, Arabidopsis lateral root development: an emerging story, Trends Plant Sci., 14, 399, 10.1016/j.tplants.2009.05.002
Laplaze, 2007, Cytokinins act directly on lateral root founder cells to inhibit root initiation, Plant Cell, 19, 3889, 10.1105/tpc.107.055863
Benková, 2003, Local, efflux-dependent auxin gradients as a common module for plant organ formation, Cell, 115, 591, 10.1016/S0092-8674(03)00924-3
Boerjan, 1995, Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction, Plant Cell, 7, 1405, 10.1105/tpc.7.9.1405
De Smet, 2010, Bimodular auxin response controls organogenesis in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 107, 2705, 10.1073/pnas.0915001107
Fukaki, 2002, Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis, Plant J., 29, 153, 10.1046/j.0960-7412.2001.01201.x
Fukaki, 2005, Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis, Plant J., 44, 382, 10.1111/j.1365-313X.2005.02537.x
De Veylder, 2002, Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor, EMBO J., 21, 1360, 10.1093/emboj/21.6.1360
Vanneste, 2005, Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana, Plant Cell, 17, 3035, 10.1105/tpc.105.035493
Werner, 2003, Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity, Plant Cell, 15, 2532, 10.1105/tpc.014928
Zalewski, 2010, Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity, J. Exp. Bot., 61, 1839, 10.1093/jxb/erq052
Pérez-Torres, 2008, Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor, Plant Cell, 20, 3258, 10.1105/tpc.108.058719
Krouk, 2010, Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants, Dev. Cell, 18, 927, 10.1016/j.devcel.2010.05.008
Parniske, 2008, Arbuscular mycorrhiza: the mother of plant root endosymbioses, Nat. Rev. Microbiol., 6, 763, 10.1038/nrmicro1987
Javot, 2007, A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis, Proc. Natl. Acad. Sci. U. S. A., 104, 1720, 10.1073/pnas.0608136104
Tian, 2010, Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux, Plant Physiol., 153, 1175, 10.1104/pp.110.156430
Porras-Soriano, 2009, Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions, J. Plant Physiol., 166, 1350, 10.1016/j.jplph.2009.02.010
Swensen, 2008, Evolution of actinorhizal host plants and Frankia symbionts, 73
Herridge, 2008, Global inputs of biological nitrogen fixation in agricultural systems, Plant Soil, 311, 1, 10.1007/s11104-008-9668-3
Radutoiu, 2007, LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range, EMBO J., 26, 3923, 10.1038/sj.emboj.7601826
Giraud, 2007, Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia, Science, 316, 1307, 10.1126/science.1139548
Tirichine, 2007, A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis, Science, 315, 104, 10.1126/science.1132397
van Noorden, 2007, Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti, Plant Physiol., 144, 1115, 10.1104/pp.107.099978
Kuppusamy, 2009, Knockdown of CELL DIVISION CYCLE16 reveals an inverse relationship between lateral root and nodule numbers and a link to auxin in Medicago truncatula, Plant Physiol., 151, 1155, 10.1104/pp.109.143024
Madsen, 2010, The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus, Nat. Commun., 1, 10, 10.1038/ncomms1009
Nur, 1980, Comparative studies of nitrogen-fixing bacteria associated with grasses in Israel with Azospirillum brasilense, Can. J. Microbiol., 26, 714, 10.1139/m80-122
Previato, 1997, Structure of the repeating oligosaccharide from the lipopolysaccharide of the nitrogen-fixing bacterium Acetobacter diazotrophicus strain PAL 5, Carbohydr. Res., 298, 311, 10.1016/S0008-6215(96)00326-6
Armengaud, 2009, EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture, Plant J., 57, 945, 10.1111/j.1365-313X.2008.03739.x
Fitz Gerald, 2006, Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity, Genetics, 172, 485, 10.1534/genetics.105.047555
Ellis, 2000, Wild barley: a source of genes for crop improvement in the 21st century?, J. Exp. Bot., 51, 9, 10.1093/jexbot/51.342.9
Svistoonoff, 2007, Root tip contact with low-phosphate media reprograms plant root architecture, Nat. Genet., 39, 792, 10.1038/ng2041
Mouchel, 2004, Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root, Genes Dev., 18, 700, 10.1101/gad.1187704
Beuchat, 2010, A hyperactive quantitative trait locus allele of Arabidopsis BRX contributes to natural variation in root growth vigor, Proc. Natl. Acad. Sci. U. S. A., 107, 8475, 10.1073/pnas.0913207107
Tsai, 1998, QTL mapping for nodule number and common bacterial blight in Phaseolus vulgaris L, Plant Soil, 204, 135, 10.1023/A:1004347515127
Sato, 2008, Genome structure of the legume, Lotus japonicus, DNA Res., 15, 227, 10.1093/dnares/dsn008
Schmutz, 2010, Genome sequence of the palaeopolyploid soybean, Nature, 463, 178, 10.1038/nature08670
Bourion, 2010, Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability, Theor. Appl. Genet., 121, 71, 10.1007/s00122-010-1292-y
van Eeuwijk, 2010, Detection and use of QTL for complex traits in multiple environments, Curr. Opin. Plant Biol., 13, 193, 10.1016/j.pbi.2010.01.001
Campos, 2004, Improving drought tolerance in maize: a view from industry, Field Crops Res., 90, 19, 10.1016/j.fcr.2004.07.003
Robinson, 1996, Resource capture by localized root proliferation: why do plants bother?, Ann. Bot., 77, 179, 10.1006/anbo.1996.0020
Bruce, 2002, Molecular and physiological approaches to maize improvement for drought tolerance, J. Exp. Bot., 53, 13, 10.1093/jexbot/53.366.13
Tardieu, 2010, Dissection and modelling of abiotic stress tolerance in plants, Curr. Opin. Plant Biol., 13, 206, 10.1016/j.pbi.2009.12.012
Iyer-Pascuzzi, 2010, Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems, Plant Physiol., 152, 1148, 10.1104/pp.109.150748
Sakamoto, 2004, Generating high-yielding varieties by genetic manipulation of plant architecture, Curr. Opin. Biotechnol., 15, 144, 10.1016/j.copbio.2004.02.003
Dun, 2009, Strigolactones: discovery of the elusive shoot branching hormone, Trends Plant Sci., 14, 364, 10.1016/j.tplants.2009.04.003
Playsted, 2006, Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae), New Phytol., 170, 491, 10.1111/j.1469-8137.2006.01697.x
Bhalerao, 2002, Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings, Plant J., 29, 325, 10.1046/j.0960-7412.2001.01217.x
Magori, 2009, Long-distance control of nodulation: molecules and models, Mol. Cells, 27, 129, 10.1007/s10059-009-0016-0
Sieburth, 2010, BYPASS1: how a tiny mutant tells a big story about root-to-shoot signaling, J. Integr. Plant Biol., 52, 77, 10.1111/j.1744-7909.2010.00902.x
Van Norman, 2004, BYPASS1 negatively regulates a root-derived signal that controls plant architecture, Curr. Biol., 14, 1739, 10.1016/j.cub.2004.09.045
Yendrek, 2010, A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula, Plant J., 62, 100, 10.1111/j.1365-313X.2010.04134.x
Lee, 2010, Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana, Nat. Biotechnol., 28, 149, 10.1038/nbt.1603
Den Herder, 2009, The unbearable naivety of legumes in symbiosis, Curr. Opin. Plant Biol., 12, 491, 10.1016/j.pbi.2009.05.010
Glover, 2007, Future farming: a return to roots?, Sci. Am. August, 82, 10.1038/scientificamerican0807-82
Melzer, 2008, Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana, Nat. Genet., 40, 1489, 10.1038/ng.253
Massonnet, 2010, Probing the reproducibility of leaf growth and molecular phenotypes: a comparison of three Arabidopsis accessions cultivated in ten laboratories, Plant Physiol., 152, 2142, 10.1104/pp.109.148338
Leitner, 2009, A dynamic model of nutrient uptake by root hairs, New Phytol., 185, 792, 10.1111/j.1469-8137.2009.03128.x
Mavromatis, 2002, Repeatability of model genetic coefficients derived from soybean performance trials across different states, Crop Sci., 42, 76, 10.2135/cropsci2002.0076
Scherr, 2008, Biodiversity conservation and agricultural sustainability: towards a new paradigm of ‘ecoagriculture’ landscapes, Philos. Trans. R. Soc. Lond. B Biol. Sci., 363, 477, 10.1098/rstb.2007.2165
Lucas, 2008, Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation, J. Exp. Bot., 59, 55, 10.1093/jxb/erm171
Lucas, 2008, An auxin transport-based model of root branching in Arabidopsis thaliana, PLoS One, 3, e3673, 10.1371/journal.pone.0003673
Grieneisen, 2007, Auxin transport is sufficient to generate a maximum and gradient guiding root growth, Nature, 449, 1008, 10.1038/nature06215
Laskowski, 2008, Root system architecture from coupling cell shape to auxin transport, PLoS Biol., 6, e307, 10.1371/journal.pbio.0060307
Mironova, 2010, A plausible mechanism for auxin patterning along the developing root, BMC Syst. Biol., 4, 98, 10.1186/1752-0509-4-98
Brun, 2010, To what extent may changes in the root system architecture of Arabidopsis thaliana grown under contrasted homogenous nitrogen regimes be explained by changes in carbon supply? A modelling approach, J. Exp. Bot., 61, 2157, 10.1093/jxb/erq090
De Smet, 2008, Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root, Science, 322, 594, 10.1126/science.1160158
Becraft, 1996, CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation, Science, 273, 1406, 10.1126/science.273.5280.1406
Dembinsky, 2007, Transcriptomic and proteomic analyses of pericycle cells of the maize primary root, Plant Physiol., 145, 575, 10.1104/pp.107.106203
Inukai, 2005, Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling, Plant Cell, 17, 1387, 10.1105/tpc.105.030981
Sreenivasulu, 2008, Barley genomics: an overview, Int. J. Plant Genomics, 10.1155/2008/486258
Draper, 2001, Brachypodium distachyon. A new model system for functional genomics in grasses, Plant Physiol., 127, 1539, 10.1104/pp.010196
Ariel, 2010, Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1, Plant Cell, 22, 2171, 10.1105/tpc.110.074823
Wang, 2010, The soybean root specific protein kinase GmWNK1 regulates stress-responsive ABA signaling on root system architecture, Plant J, 10.1111/j.1365-313X.2010.04320.x
Gou, 2010, Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones, Plant Cell, 22, 623, 10.1105/tpc.109.073239
Marco, 2009, An experimental and modelling exploration of the host-sanction hypothesis in legume-rhizobia mutualism, J. Theor. Biol., 259, 423, 10.1016/j.jtbi.2009.03.033
Downie, 2010, The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots, FEMS Microbiol. Rev., 34, 150, 10.1111/j.1574-6976.2009.00205.x
Deakin, 2009, Symbiotic use of pathogenic strategies: rhizobial protein secretion systems, Nat. Rev. Microbiol., 7, 312, 10.1038/nrmicro2091
Schumpp, 2010, How inefficient rhizobia prolong their existence within nodules, Trends Plant Sci., 15, 189, 10.1016/j.tplants.2010.01.001
Marchetti, 2010, Experimental evolution of a plant pathogen into a legume symbiont, PLoS Biol., 8, e1000280, 10.1371/journal.pbio.1000280
Aguilar, 2004, Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification, Proc. Natl. Acad. Sci. U. S. A., 101, 13548, 10.1073/pnas.0405321101