The role of vasculature in bone development, regeneration and proper systemic functioning
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dai J, Rabie BM (2007) VEGF: an essential mediator of both angiogenesis and endochondral ossification. J Dent Res 86(10):937–950
Hankenson KD, Dishowitz M, Gray C, Schenker M (2011) Angiogenesis in bone regeneration. Injury 42(6):556–561
Huang B, Wang W, Li Q, Wang Z, Yan B, Zhang Z, Wang L, Huang M, Jia C, Lu J, Liu S, Chen H, Li M, Cai D, Jiang Y, Jin D, Bai X (2016) Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone. Nat Commun 7:13885
Tomlinson RE, Silva MJ (2013) Skeletal blood flow in bone repair and maintenance. Bone Res 1(4):311–322
Niedźwiedzki T, Filipowska J (2015) Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system. J Mol Endocrinol 55(2):R23–R36
Percival CJ (2013) The influence of angiogenesis on craniofacial development and evolution, Ph.D. Thesis, Penn State
Percival CJ, Richtsmeier JT (2014) Angiogenesis and intramembranous osteogenesis. Dev Dyn 242(8):909–922
Chan WP, Liu YJ, Huang GS, Lin MF, Huang S, Chang YC, Jiang CC (2011) Relationship of idiopathic osteonecrosis of the femoral head to perfusion changes in the proximal femur by dynamic contrast-enhanced MRI. AJR Am J Roentgenol 196(3):637–643
Hayashi S, Kim JH, Hwang SE, Shibata S, Fujimiya M, Murakami G, Cho BH (2014) Interface between intramembranous and endochondral ossification in human foetuses. Folia Morphol (Warsz) 73(2):199–205
Liu Y, Olsen BR (2014) Distinct VEGF functions during bone development and homeostasis. Arch Immunol Ther Exp (Warsz) 62(5):363–368
Hu K, Olsen BR (2016) Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Investig 126(2):509–526
Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Carmeliet G (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 111(1–2):61–73
Azimi-Nezhad M (2014) Vascular endothelial growth factor from embryonic status to cardiovascular pathology. Rep Biochem Mol Biol 2(2):59–69
Maes C, Stockmans I, Moermans K, Van Looveren R, Smets N, Carmeliet P, Carmeliet G (2004) Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J Clin Investig 113(2):188–199
Maes C, Goossens S, Bartunkova S, Drogat B, Coenegrachts L, Stockmans I, Haigh JJ (2010) Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J 29(2):424–441
Ben Shoham A, Rot C, Stern T, Krief S, Akiva A, Dadosh T, Zelzer E (2016) Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology. Development 143(21):3933–3943
Skawina A, Litwin JA, Gorczyca J, Miodoński A (1994) Blood vessels in epiphyseal cartilage of human fetal femoral bone: a scanning electron microscopic study of corrosion casts. Anat Embryol (Berl) 189(5):457–462
Thompson TJ, Owens PD, Wilson DJ (1989) Intramembranous osteogenesis and angiogenesis in the chick embryo. J Anat 166:55–65
Maes C, Kobayashi T, Selig MK, Torrekens S, Sanford I, Mackem S, Kronenberg HM (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19(2):329–344
Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neuro Oncol 50(1–2):1–15
Kanczler JM, Oreffo RO (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15:100–114
Portal-Núñez S, Lozano D, Esbrit P (2012) Role of angiogenesis on bone formation. Histol Histopathol 27(5):559–566
Breier G, Albrecht U, Sterrer S, Risau W (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114(2):521–532
Wiszniak S, Mackenzie FE, Anderson P, Kabbara S, Ruhrberg C, Schwarz Q (2015) Neural crest cell-derived VEGF promotes embryonic jaw extension. Proc Natl Acad Sci USA 112(19):6086–6091
Trueta J, Harrison H (1953) The normal vascular anatomy of the femoral head in adult man. J Bone Jt Surg Br 35–B(3):442–461
Trueta J, Morgan JD (1960) The vascular contribution to osteogenesis. I. Studies by the injection method. J Bone Jt Surg Br 42–B:97–109
Brookes M (1963) Cortical vascularization and growth in foetal tubular bones. J Anat 97:597–609
Skawina A (1982) Nutrient foramina in femoral, tibial and fibular bones in human fetuses. Folia Morphol (Warsz) 41(4):469–481
Skawina A (1986) Cortical vascularization of the femoral, tibial and fibular bones during prenatal development. Folia Morphol (Warsz) 45(4):290–295
Skawina A, Litwin JA, Gorczyca J, Miodoński AJ (1997) The architecture of internal blood vessels in human fetal vertebral bodies. J Anat 191:259–267
Georgia R, Albu I, Sicoe M, Georoceanu M (1982) Comparative aspects of the density and diameter of Haversian canals in the diaphyseal compact bone of man and dog. Morphol Embryol (Bucur) 28(1):11–14
Brookes M, Elkin AC, Harrison RG, Heald C (1961) A new concept of capillary circulation in bone cortex: some clinical applications. Lancet 277(7186):1078–1081
Shin KJ, Kim JN, Lee SH, Paik DJ, Song WC, Koh KS, Gil YC (2016) Arterial supply and anastomotic pattern of the infraspinous fossa focusing on the surgical significance. J Plast Reconstr Aesthet Surg 69(4):512–518
Aharinejad S, Marks SC Jr, Böck P, MacKay CA, Larson EK, Tahamtani A, Mason-Savas A, Firbas W (1995) Microvascular pattern in the metaphysis during bone growth. Anat Rec 242(1):111–122
Kobayashi S, Mwaka ES, Baba H, Takeno K, Miyazaki T, Matsuo H, Meir A (2010) Microvascular system of the lumbar dorsal root ganglia in rats. Part I: a 3D analysis with scanning electron microscopy of vascular corrosion casts. J Neurosurg Spine 12(2):197–202
Yang M, Yang L (2012) A simple method to detect human intraosseous vascular structures: using the calcaneus as an example. Surg Radiol Anat 34(9):839–846
Shenk R (1998) Biology of fracture repair. In: Brown BD, Jupiter JB, Levine AM et al (eds) Skeletal trauma: fractures, dislocations, ligamentous bone injuries, 2nd edn. W. B. Saunders, Philadelphia
Pazzaglia UE, Congiu T, Raspanti M, Ranchetti F, Quacci D (2009) Anatomy of the intracortical canal system: scanning electron microscopy study in rabbit femur. Clin Orthop Relat Res 467(9):2446–2456
Brookes M, Revell WJ (eds) (1998) Blood supply of flat bones. In: Blood supply of bone. Springer, London
Flanagan D (2003) Important arterial supply of the mandible, control of an arterial hemorrhage, and report of a hemorrhagic incident. J Oral Implantol 29(4):165–173
Pannarale L, Morini S, D’Ubaldo E, Gaudio E, Marinozzi G (1997) SEM corrosion-casts study of the microcirculation of the flat bones in the rat. Anat Rec 247(4):462–471
Ding L, Morrison S (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235
Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, Jaiyeola C, Zhao Z, Luby-Phelps K, Morrison SJ (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526(7571):126–130
Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette P (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502(7473):637–643
Kusumbe AP, Ramasamy SK, Itkin T, Mäe MA, Langen UH, Betsholtz C, Lapidot T, Adams RH (2016) Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532(7599):380–384
Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG, Kalinkovich A, Ludin A, Kollet O, Shakhar G, Butler JM, Rafii S, Adams RH, Scadden DT, Lin CP, Lapidot T (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532(7599):323–328
Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492):323–328
Ramasamy SK, Kusumbe AP, Wang L, Adams RH (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492):376–380
Maes C, Clemens TL (2014) Angiogenic–osteogenic coupling: the endothelial perspective. BoneKEy Rep 3:578
Eman RM, Meijer HA, Oner FC, Dhert WJ, Alblas J (2016) Establishment of an early vascular network promotes the formation of ectopic bone. Tissue Eng Part A 22(3–4):253–262
Claesson-Welsh L (2016) VEGF receptor signal transduction—a brief update. Vasc Pharmacol 86:14–17. doi: 10.1016/j.vph.2016.05.011
Schipani E, Maes C, Carmeliet G, Semenza GL (2009) Perspective regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 2424(8):1347–1353
Cui M, Kanemoto S, Cui X, Kaneko M, Asada R, Matsuhisa K, Imaizumi K (2015) OASIS modulates hypoxia pathway activity to regulate bone angiogenesis. Sci Rep 5:16455
Kaushik AP, Das A, Cui Q (2012) Osteonecrosis of the femoral head: an update in year 2012. World J Orthop 3(5):49–57
Pouya F, Kerachian M (2015) Avascular necrosis of the femoral head: are any genes involved? Arch Bone Jt Surg 3(3):149–155
Feng Y, Yang SH, Xiao BJ, Xu WH, Ye SN, Xia T, Liao YF (2010) Decreased in the number and function of circulation endothelial progenitor cells in patients with avascular necrosis of the femoral head. Bone 46(1):32–40
Asahara T, Murohara T, Sullivan A, Silver M, Van R, Asahara T, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967
Lee DY, Cho TJ, Kim JA, Lee HR, Yoo WJ, Chung CY, Choi IH (2008) Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone 42(5):932–941
Matsumoto T, Mifune Y, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, Asahara T (2008) Fracture induced mobilization and incorporation of bone marrow-derived endothelial progenitor cells for bone healing. J Cell Physiol 215(1):234–242
Zhao Q, Shen X, Zhang W, Zhu G, Qi J, Deng L (2012) Mice with increased angiogenesis and osteogenesis due to conditional activation of HIF pathway in osteoblasts are protected from ovariectomy induced bone loss. Bone 50(3):763–770
Liu X, Tu Y, Zhang L, Qi J, Ma T, Deng L (2014) Prolyl hydroxylase inhibitors protect from the bone loss in ovariectomy rats by increasing bone vascularity. Cell Biochem Biophys 69(1):141–149
Peng J, Hui K, Hao C, Peng Z, Gao QX, Jin Q, Fu DL (2016) Low bone turnover and reduced angiogenesis in streptozotocin-induced osteoporotic mice. Connect Tissue Res 57(4):277–289
Stabley JN, Prisby RD, Behnke BJ, Delp MD (2015) Type 2 diabetes alters bone and marrow blood flow and vascular control mechanisms in the ZDF rat. J Endocrinol 225(1):47–58
Oikawa A, Siragusa M, Quaini F, Katare RG, Caporali A, Buul JD, Van Madeddu P (2013) Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol 30(3):498–508
Peng J, Qu H, Peng J, Luo TY, Lv FJ, Chen L, Cheng QF (2016) Abnormal spontaneous brain activity in type 2 diabetes with and without microangiopathy revealed by regional homogeneity. Eur J Radiol 85(3):607–615
Portal-Núñez S, Ardura JA, Lozano D, Bolívar OH, López-Herradón A, Gutiérrez-Rojas I, Proctor A, van der Eerden B, Schreuders-Koedam M, van Leeuwen J, Alcaraz MJ, Mulero F, de la Fuente M, Esbrit P (2016) Adverse effects of diabetes mellitus on the skeleton of aging mice. J Gerontol A Biol Sci Med Sci 71(3):290–299
Bandeira E, Neves AP, Costa C, Bandeira F (2012) Association between vascular calcification and osteoporosis in men with type 2 diabetes. J Clin Densitom 15(1):55–60
Yamagishi S, Nakamura N (2015) Advanced glycation end products: a molecular target for vascular complications in diabetes. Mol Med 21(suppl 1):S32–S34
Prasad M, Reriani M, Khosla S, Gössl M, Lennon R, Gulati R, Lerman A (2014) Coronary microvascular endothelial dysfunction is an independent predictor of development of osteoporosis in postmenopausal women. Vasc Health Risk Manag 10:533–538
Liu Y, Almeida M, Weinstein RS, O’Brien CA, Manolagas SC, Jilka RL (2016) Skeletal inflammation and attenuation of Wnt signaling, Wnt ligand expression and bone formation in atherosclerotic ApoE null mice. Am J Physiol Endocrinol Metab 310(9):E762–E773
Li Y, Zhang CG, Wang XH, Liu DH (2016) Progression of atherosclerosis in ApoE-knockout mice fed on a high-fat diet. Eur Rev Med Pharmacol Sci 20(18):3863–3867
Pederson WC, Person DW (2007) Long bone reconstruction with vascularized bone grafts. Orthop Clin North Am 38(1):23–35
Zhao D, Liu B, Wang B, Yang L, Xie H, Huang S, Wei X (2015) Autologous bone marrow mesenchymal stem cells associated with tantalum rod implantation and vascularized iliac grafting for the treatment of end-stage osteonecrosis of the femoral head. BioMed Res Int. doi: 10.1155/2015/240506
Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9(1):18
Sathy BN, Mony U, Menon D, Baskaran VK, Mikos AG, Nair S (2015) Bone tissue engineering with multilayered scaffolds-Part I: an approach for vascularizing engineered constructs in vivo. Tissue Eng Part A 21(19–20):2480–2494
Wei J, Herrler T, Dai C, Liu K, Han D, Li Q (2016) Guided self-generation of vascularized neo-bone for autologous reconstruction of large mandibular defects. J Craniofac Surg 27(4):958–962
Mercado-Pagán ÁE, Stahl AM, Shanjani Y, Yang Y (2015) Vascularization in bone tissue engineering constructs. Ann Biomed Eng 43(3):718–729
Weigand A, Beier JP, Hess A, Gerber T, Arkudas A, Horch RE, Boos AM (2015) Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization. Tissue Eng Part A 21(9–10):1680–1694
Zhang C, Ma J, Li M, Li XH, Dang XQ, Wang KZ (2015) Repair effect of coexpression of the hVEGF and hBMP genes via an adeno-associated virus vector in a rabbit model of early steroid-induced avascular necrosis of the femoral head. Transl Res 166(3):269–280
Cao K, Huang W, An H, Jiang D, Shu Y, Han Z (2009) Deproteinized bone with VEGF gene transfer to facilitate the repair of early avascular necrosis of femoral head of rabbit. Chin J Traumatol 12(5):269–274