The role of the weakest-link mechanism in controlling the plasticity of micropillars

Journal of the Mechanics and Physics of Solids - Tập 57 - Trang 32-50 - 2009
Jaafar A. El-Awady1, Ming Wen1, Nasr M. Ghoniem1
1Mechanical and Aerospace Engineering Department, University of California, Los Angles, CA 90095-1597, USA

Tài liệu tham khảo

Ananthakrishna, 2007, Current theoretical approaches to collective behavior of dislocations, Phys. Rep., 440, 113, 10.1016/j.physrep.2006.10.003 Basinski, 1979, Plastic deformation and work hardening, 4, 261 Bei, 2007, Compressive strengths of molybdenum alloy micropillars prepared using a new technique, Scripta Mater, 57, 397, 10.1016/j.scriptamat.2007.05.010 Bei, 2007, Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal, Appl. Phys. Lett., 91, 111915, 10.1063/1.2784948 Benzerga, 2006, Scale dependence of mechanical properties of single crystals under uniform deformation, Scripta Mater, 54, 1937, 10.1016/j.scriptamat.2006.02.003 Bonneville, 1979, Cross-slipping process and the stress-orientation dependence in pure copper, Acta Metall, 27, 1477, 10.1016/0001-6160(79)90170-6 Budiman, 2008, A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron x-ray microdiffraction, Acta Mater, 56, 602, 10.1016/j.actamat.2007.10.031 Deshpande, 2005, Plasticity size effects in tension and compression of single crystals, J. Mech. Phys. Solids, 53, 2661, 10.1016/j.jmps.2005.07.005 Dimiduk, 2005, Size-affected single-slip behavior of pure nickel microcrystals, Scripta Mater, 53, 4065 Duesbery, 1992, The mechanics and energetics of cross-slip, Acta Metall. Mater., 40, 149, 10.1016/0956-7151(92)90208-V El-Awady, 2008, A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes, J. Mech. Phys. Solids, 56, 2019, 10.1016/j.jmps.2007.11.002 Escaig, 1968, Cross-slipping process in the fcc structure Foreman, 1967, The bowing of a dislocation segment, Phil. Mag., 15, 1011, 10.1080/14786436708221645 Frick, 2008, Size effect on strength and strain hardening of small-scale [111] nickel compression pillars, Mat. Sci. Eng. A, 489, 319, 10.1016/j.msea.2007.12.038 Friedel, 1957, 330 Ghoniem, 1999, Fast sum method for the elastic field of 3-D dislocation ensembles, Phys. Rev. B, 60, 128, 10.1103/PhysRevB.60.128 Ghoniem, 2000, Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation, Phys. Rev. B, 61, 913, 10.1103/PhysRevB.61.913 Greer, 2006, Bridging the gap between computational and experimental length scales: a review on nano-scale plasticity, Rev. Adv. Mater. Sci., 13, 59 Greer, 2006, Nanoscale gold pillars strengthened through dislocation starvation, Phys. Rev. B, 73, 245410, 10.1103/PhysRevB.73.245410 Greer, 2005, Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients, Acta Mater, 53, 1821, 10.1016/j.actamat.2004.12.031 Greer, J., Weinberger, C., Cai, W., 2008. Comparing the strength of fcc and bcc sub-micron pillars: compression experiments and dislocation dynamics simulations. Mater. Sci. Eng. A 493 (1–2), 21–25. Guruprasad, 2008, Size effects under homogeneous deformation of single crystals: a discrete dislocation analysis, J. Mech. Phys. Solids, 56, 132, 10.1016/j.jmps.2007.03.009 Kiener, 2006, Determination of mechanical properties of copper at the micron scale, Adv. Eng. Mater, 8, 1119, 10.1002/adem.200600129 Kiener, 2007, Fib damage of Cu and possible consequences for miniaturized mechanical tests, Mater. Sci. Eng. A, 459, 262, 10.1016/j.msea.2007.01.046 Kubin, L., Canova, G., Condat, M., Devincre, B., Pontikis, V., Bréechet, Y., 1992. Dislocation microstructures and plastic flow: a 3-D simulation. Diffusion and Defect Data - Solid State Data, Part B (Solid State Phenomena) 23–24, 455–472. Maaß, 2007, A strong micropillar containing a low angle grain boundary, Appl. Phys. Lett, 91, 131909, 10.1063/1.2784938 Maaß, 2007, Time-resolved laue diffraction of defoming micropillars, Phys. Rev. Lett, 99, 145505, 10.1103/PhysRevLett.99.145505 Mader, 1963, Surface and thin-foil observations of the substructure in deforrmed face-centered cubic and hexagonal close-packed metal single crystals, 183 Mughrabi, 1976, Observation of pinned dislocation arrangements by transmission electron microscopy (TEM), J. Microsc. Spectrosc. Electron, 1, 571 Norfleet, 2008, Dislocation structures and their relationship to strength in deformed nickel microcrystals, Acta Mater, 56, 2988, 10.1016/j.actamat.2008.02.046 Parthasarathy, 2007, Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples, Scr. Mater, 56, 313, 10.1016/j.scriptamat.2006.09.016 Puschl, 1982, The strength of the dislocation forest for 30∘ and 60∘ dislocations, Phys. Stat. Sol. (a), 74, 211, 10.1002/pssa.2210740125 Raabe, D., M.D., Roters, F., 2007. Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: A crystal plasticity finite element study. Acta Mater. 55(13), 4567–4583. Rao, 1999, Atomistic simulation of cross-slip processes in model fcc structures, Phil. Mag. A, 79, 1167, 10.1080/01418619908210354 Rasmussen, 1997, Atomistic determination of cross-slip pathway and energetics, Phys. Rev. Lett, 79, 3676, 10.1103/PhysRevLett.79.3676 Schoeck, 1972, The contribution of the dislocation forest to the flow stress, Phys. Stat. Sol. (b), 53, 661, 10.1002/pssb.2220530227 Schoeck, G., Seeger, A., 1955. Activation energy problems associated with extended dislocations. In: Report of the Bristol Conference on Defects in Crystalline Solids. Physical Society, London, pp. 340–346. Shan, 2007, Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals, Nature Materials, 7, 115, 10.1038/nmat2085 Starenchenko, 1999, Action of test temperature on evolution of dislocation structure of nickel single crystals with the [001] compression axis, Russian Physics J., 42, 653, 10.1007/BF02513232 Takahashi, 2008, A computational method for dislocation-precipitate interaction, J. Mech. Phys. Solids, 56, 1534, 10.1016/j.jmps.2007.08.002 Tang, 2007, Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression, Acta Mater, 55, 1607, 10.1016/j.actamat.2006.10.021 Tang, 2008, Dislocation-source shutdown and the plastic behavior of single-crystal micropillars, Phys. Rev. Lett., 100, 185503, 10.1103/PhysRevLett.100.185503 Uchic, M., Dimiduk, D., Florando, J., Nix, W., 2003. Exploring specimen size effects in plastic deformation of Ni3(Al,Ta). In: George, E. (Ed.), Materials Research Society Symposium Proceedings. Vol. 753. Materials Research Society, Pittsburgh, PA, pp. BB1.4.1—BB1.4.6. Uchic, 2004, Sample dimensions influence strength and crystal plasticity, Science, 305, 986, 10.1126/science.1098993 Uchic, 2005, A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing, Mat. Sci. Eng. A, 400-401, 268, 10.1016/j.msea.2005.03.082 Van der Giessen, 1995, Discrete dislocation plasticity: a simple planar model, Modeling Simul. Mater. Sci. Eng., 3, 689, 10.1088/0965-0393/3/5/008 Volkert, 2006, Size effects in the deformation of sub-micron au columns, Philos. Mag., 86, 5567, 10.1080/14786430600567739 von Blanckenhagen, 2004, Discrete dislocation simulation of plastic deformation in metal thin films, Acta Mater., 52, 773, 10.1016/j.actamat.2003.10.022 Weygand, 2007, Three-dimensional dislocation dynamics simulation of the influence of sample size on the stress–strain behavior of fcc single-crystalline pillars, Mater. Sci. Eng. A, 483–484, 188 Zhu, 2008, Temperature and strain-rate dependence of surface dislocation nucleation, Phys. Rev. Lett., 100, 025502, 10.1103/PhysRevLett.100.025502