The role of the weakest-link mechanism in controlling the plasticity of micropillars
Tài liệu tham khảo
Ananthakrishna, 2007, Current theoretical approaches to collective behavior of dislocations, Phys. Rep., 440, 113, 10.1016/j.physrep.2006.10.003
Basinski, 1979, Plastic deformation and work hardening, 4, 261
Bei, 2007, Compressive strengths of molybdenum alloy micropillars prepared using a new technique, Scripta Mater, 57, 397, 10.1016/j.scriptamat.2007.05.010
Bei, 2007, Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal, Appl. Phys. Lett., 91, 111915, 10.1063/1.2784948
Benzerga, 2006, Scale dependence of mechanical properties of single crystals under uniform deformation, Scripta Mater, 54, 1937, 10.1016/j.scriptamat.2006.02.003
Bonneville, 1979, Cross-slipping process and the stress-orientation dependence in pure copper, Acta Metall, 27, 1477, 10.1016/0001-6160(79)90170-6
Budiman, 2008, A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron x-ray microdiffraction, Acta Mater, 56, 602, 10.1016/j.actamat.2007.10.031
Deshpande, 2005, Plasticity size effects in tension and compression of single crystals, J. Mech. Phys. Solids, 53, 2661, 10.1016/j.jmps.2005.07.005
Dimiduk, 2005, Size-affected single-slip behavior of pure nickel microcrystals, Scripta Mater, 53, 4065
Duesbery, 1992, The mechanics and energetics of cross-slip, Acta Metall. Mater., 40, 149, 10.1016/0956-7151(92)90208-V
El-Awady, 2008, A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes, J. Mech. Phys. Solids, 56, 2019, 10.1016/j.jmps.2007.11.002
Escaig, 1968, Cross-slipping process in the fcc structure
Foreman, 1967, The bowing of a dislocation segment, Phil. Mag., 15, 1011, 10.1080/14786436708221645
Frick, 2008, Size effect on strength and strain hardening of small-scale [111] nickel compression pillars, Mat. Sci. Eng. A, 489, 319, 10.1016/j.msea.2007.12.038
Friedel, 1957, 330
Ghoniem, 1999, Fast sum method for the elastic field of 3-D dislocation ensembles, Phys. Rev. B, 60, 128, 10.1103/PhysRevB.60.128
Ghoniem, 2000, Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation, Phys. Rev. B, 61, 913, 10.1103/PhysRevB.61.913
Greer, 2006, Bridging the gap between computational and experimental length scales: a review on nano-scale plasticity, Rev. Adv. Mater. Sci., 13, 59
Greer, 2006, Nanoscale gold pillars strengthened through dislocation starvation, Phys. Rev. B, 73, 245410, 10.1103/PhysRevB.73.245410
Greer, 2005, Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients, Acta Mater, 53, 1821, 10.1016/j.actamat.2004.12.031
Greer, J., Weinberger, C., Cai, W., 2008. Comparing the strength of fcc and bcc sub-micron pillars: compression experiments and dislocation dynamics simulations. Mater. Sci. Eng. A 493 (1–2), 21–25.
Guruprasad, 2008, Size effects under homogeneous deformation of single crystals: a discrete dislocation analysis, J. Mech. Phys. Solids, 56, 132, 10.1016/j.jmps.2007.03.009
Kiener, 2006, Determination of mechanical properties of copper at the micron scale, Adv. Eng. Mater, 8, 1119, 10.1002/adem.200600129
Kiener, 2007, Fib damage of Cu and possible consequences for miniaturized mechanical tests, Mater. Sci. Eng. A, 459, 262, 10.1016/j.msea.2007.01.046
Kubin, L., Canova, G., Condat, M., Devincre, B., Pontikis, V., Bréechet, Y., 1992. Dislocation microstructures and plastic flow: a 3-D simulation. Diffusion and Defect Data - Solid State Data, Part B (Solid State Phenomena) 23–24, 455–472.
Maaß, 2007, A strong micropillar containing a low angle grain boundary, Appl. Phys. Lett, 91, 131909, 10.1063/1.2784938
Maaß, 2007, Time-resolved laue diffraction of defoming micropillars, Phys. Rev. Lett, 99, 145505, 10.1103/PhysRevLett.99.145505
Mader, 1963, Surface and thin-foil observations of the substructure in deforrmed face-centered cubic and hexagonal close-packed metal single crystals, 183
Mughrabi, 1976, Observation of pinned dislocation arrangements by transmission electron microscopy (TEM), J. Microsc. Spectrosc. Electron, 1, 571
Norfleet, 2008, Dislocation structures and their relationship to strength in deformed nickel microcrystals, Acta Mater, 56, 2988, 10.1016/j.actamat.2008.02.046
Parthasarathy, 2007, Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples, Scr. Mater, 56, 313, 10.1016/j.scriptamat.2006.09.016
Puschl, 1982, The strength of the dislocation forest for 30∘ and 60∘ dislocations, Phys. Stat. Sol. (a), 74, 211, 10.1002/pssa.2210740125
Raabe, D., M.D., Roters, F., 2007. Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: A crystal plasticity finite element study. Acta Mater. 55(13), 4567–4583.
Rao, 1999, Atomistic simulation of cross-slip processes in model fcc structures, Phil. Mag. A, 79, 1167, 10.1080/01418619908210354
Rasmussen, 1997, Atomistic determination of cross-slip pathway and energetics, Phys. Rev. Lett, 79, 3676, 10.1103/PhysRevLett.79.3676
Schoeck, 1972, The contribution of the dislocation forest to the flow stress, Phys. Stat. Sol. (b), 53, 661, 10.1002/pssb.2220530227
Schoeck, G., Seeger, A., 1955. Activation energy problems associated with extended dislocations. In: Report of the Bristol Conference on Defects in Crystalline Solids. Physical Society, London, pp. 340–346.
Shan, 2007, Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals, Nature Materials, 7, 115, 10.1038/nmat2085
Starenchenko, 1999, Action of test temperature on evolution of dislocation structure of nickel single crystals with the [001] compression axis, Russian Physics J., 42, 653, 10.1007/BF02513232
Takahashi, 2008, A computational method for dislocation-precipitate interaction, J. Mech. Phys. Solids, 56, 1534, 10.1016/j.jmps.2007.08.002
Tang, 2007, Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression, Acta Mater, 55, 1607, 10.1016/j.actamat.2006.10.021
Tang, 2008, Dislocation-source shutdown and the plastic behavior of single-crystal micropillars, Phys. Rev. Lett., 100, 185503, 10.1103/PhysRevLett.100.185503
Uchic, M., Dimiduk, D., Florando, J., Nix, W., 2003. Exploring specimen size effects in plastic deformation of Ni3(Al,Ta). In: George, E. (Ed.), Materials Research Society Symposium Proceedings. Vol. 753. Materials Research Society, Pittsburgh, PA, pp. BB1.4.1—BB1.4.6.
Uchic, 2004, Sample dimensions influence strength and crystal plasticity, Science, 305, 986, 10.1126/science.1098993
Uchic, 2005, A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing, Mat. Sci. Eng. A, 400-401, 268, 10.1016/j.msea.2005.03.082
Van der Giessen, 1995, Discrete dislocation plasticity: a simple planar model, Modeling Simul. Mater. Sci. Eng., 3, 689, 10.1088/0965-0393/3/5/008
Volkert, 2006, Size effects in the deformation of sub-micron au columns, Philos. Mag., 86, 5567, 10.1080/14786430600567739
von Blanckenhagen, 2004, Discrete dislocation simulation of plastic deformation in metal thin films, Acta Mater., 52, 773, 10.1016/j.actamat.2003.10.022
Weygand, 2007, Three-dimensional dislocation dynamics simulation of the influence of sample size on the stress–strain behavior of fcc single-crystalline pillars, Mater. Sci. Eng. A, 483–484, 188
Zhu, 2008, Temperature and strain-rate dependence of surface dislocation nucleation, Phys. Rev. Lett., 100, 025502, 10.1103/PhysRevLett.100.025502