The role of the second order Jahn–Teller effect in the thermal reactions of ethylene

Russian Journal of Physical Chemistry B - Tập 10 - Trang 884-889 - 2017
I. V. Bilera1, Yu. A. Borisov2, N. N. Buravtsev1, Yu. A. Kolbanovsky1
1Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
2Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

The UV absorption spectrum of ethylene during the pulse heating of an ethylene–argon mixture to prepyrolysis temperatures in the range 950 < Т < 1285 K was studied by kinetic spectroscopy in a free-piston adiabatic compression unit. New intense light absorption bands were found at 210 < λ < 260 and 440 < λ < 490 nm. Ab initio quantum-chemical calculations of the mechanism of the thermal cis-trans isomerization of ethylene were performed. When this mixture is heated, the point symmetry group of the ethylene molecule in the ground state S0 reduces to С 1, which is characteristic for ethylene at the minimum of the S 1 state, due to the second order Jahn–Teller effect.

Tài liệu tham khảo

Yu. A. Kolbanovskii, Yu. A. Borisov, B. Ts. Garrett, N. N. Buravtsev, and I. V. Bilera, Ross. Khim. Zh. 47 (2), 3 (2003). I. V. Bilera, Yu. A. Borisov, N. N. Buravtsev, and Yu. A. Kolbanovskii, in Cosmic Challenge of 21st Century. Chemical and Radiation Physics, Ed. by I. G. Assovskii, A. A. Berlin, G. B. Manelis, and F. G. Merzhanov (Torus, Moscow, 2011), Vol. 4, p. 125 [in Russian]. N. N. Buravtsev and Yu. A. Kolbanovskii, Russ. J. Appl. Chem. 75, 598 (2002). I. V. Bilera, Yu. A. Borisov, N. N. Buravtsev, and Yu. A. Kolbanovskii, Dokl. Phys. Chem. 386, 235 (2002). Yu. A. Kolbanovskii, Yu. A. Borisov, B. Ts. Garrett, N. N. Buravtsev, and I. V. Bilera, Ross. Khim. Zh. 47 (2), 3 (2003). I. V. Bilera, Yu. A. Borisov, N. N. Buravtsev, and Yu. A. Kolbanovskii, Dokl. Phys. Chem. 388, 63 (2003). N. N. Buravtsev and Yu. A. Kolbanovskii, in Modern Problems of Chemical and Radiation Physics, Ed. by A. A. Berlin, G. B. Manelis, and A. G. Merzhanov (OIKhF RAN, Chernogolovka, Moscow, 2009), p. 15 [in Russian]. I. V. Bilera, Yu. A. Borisov, N. N. Buravtsev, and Yu. A. Kolbanovskii, in Cosmic Challenge of 21st Century. Chemical and Radiation Physics, Ed. by I. G. Assovskii, A. A. Berlin, G. B. Manelis, and F. G. Merzhanov (Torus, Moscow, 2011), Vol. 4, p. 125 [in Russian]. G. Herzberg, Molecular Spectra and Molecular Structure: Electronic Spectra and Electronic Structure of Polyatomic Molecules (Krieger, Malabar, 1991; Mir, Moscow, 1969). M. Barbatti, J. Paier, and H. Lischka, J. Chem. Phys. 121, 11614 (2004). R. Benassi, C. Bertarini, E. Kleinpeter, and F. J. Taddei, J. Mol. Struct.: THEOCHEM 498, 217 (2000). R. Benassi, C. Bertarini, F. Taddei, and E. Kleinpeter, J. Mol. Struct.: THEOCHEM 541, 101 (2001). R. Benassi and F. Taddei, J. Mol. Struct.: THEOCHEM 572, 169 (2001). C. Gonzalez and H. B. Schlegel, J. Phys. Chem. 94, 5523 (1990). H. B. Schlegel, in Modern Electronic Structure Theory, Ed. by D. R. Yarkony (World Scientific, Singapore, 1995). M. S. Gordon, Chem. Phys. Lett. 76, 163 (1980). H. B. Schlegel and M. A. Robb, Chem. Phys. Lett. 93, 43 (1982). J. B. Foresman and M. J. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed. (Gaussian Inc., Pittsburg, PA, 1996). M. Ben-Nun and T. J. Martinez, Chem. Phys. Lett. 298, 57 (1998). M. Barbatti, J. Paier, and H. Lischka, J. Chem. Phys. 121, 11614 (2004). L. M. Quick, D. A. Knecht, and M. H. Back, Int. J. Chem. Kinet. 4, 61 (1972).