Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Vai trò của khoang miệng trong các nhiễm virus SARS-CoV-2 và các nhiễm trùng đường hô hấp trên khác
Tóm tắt
Nghiên cứu này nhằm xem xét vai trò của khoang miệng trong các nhiễm trùng đường hô hấp trên do SARS-CoV-2 và các virus khác. Dữ liệu được xem xét trong bài viết đã được nghiên cứu trực tuyến và cũng phản ánh kinh nghiệm cá nhân. Nhiều virus hô hấp và các virus khác sinh sản trong khoang miệng và được truyền qua aerosol (< 5 µm) và giọt nước (> 5 µm). Sự sinh sản của SARS-CoV-2 đã được ghi nhận ở đường hô hấp trên cũng như ở niêm mạc miệng và tuyến nước bọt. Những vị trí này cũng là các bể chứa virus có thể lây nhiễm cho các cơ quan khác, ví dụ như phổi và đường tiêu hóa, cũng như cho những cá nhân khác. Chẩn đoán virus tại khoang miệng và đường hô hấp trên trong phòng thí nghiệm tập trung vào PCR thời gian thực; các xét nghiệm kháng nguyên ít nhạy cảm hơn. Để sàng lọc và theo dõi nhiễm trùng, các mẫu gạc họng mũi và khoang miệng được kiểm tra; nước bọt là một lựa chọn tốt và thoải mái hơn. Các biện pháp vật lý như giữ khoảng cách xã hội hoặc đeo khẩu trang đã chứng minh hiệu quả trong việc giảm nguy cơ nhiễm trùng. Các nghiên cứu cả trong phòng thí nghiệm và lâm sàng xác nhận rằng nước súc miệng có hiệu quả chống lại SARS-CoV-2 và các virus khác. Nước súc miệng kháng virus có thể vô hiệu hóa tất cả các virus sinh sản trong khoang miệng. Khoang miệng đóng vai trò quan trọng trong các nhiễm trùng virus của đường hô hấp trên: nó hoạt động như một cổng vào, một nơi sinh sản, và một nguồn lây nhiễm qua các giọt và aerosol. Các phương pháp vật lý cũng như nước súc miệng kháng virus có thể giúp giảm sự lây lan của virus và góp phần vào việc kiểm soát nhiễm trùng.
Từ khóa
#SARS-CoV-2 #khoang miệng #nhiễm virus #đường hô hấp trên #nước súc miệng kháng virusTài liệu tham khảo
Ke R, Romero-Severson E, Sanche S, Hengartner N (2021) Estimating the reproductive number R(0) of SARS-CoV-2 in the United States and eight European countries and implications for vaccination. J Theor Biol 517:110621. https://doi.org/10.1016/j.jtbi.2021.110621
Liu Y, Rocklov J (2022) The effective reproductive number of the omicron variant of SARS-CoV-2 is several times relative to Delta. J Travel Med 29. https://doi.org/10.1093/jtm/taac037
Jarvis MC (2020) Aerosol transmission of SARS-CoV-2: physical principles and implications. Front Public Health 8:590041. https://doi.org/10.3389/fpubh.2020.590041
Smither SJ, Eastaugh LS, Findlay JS, Lever MS (2020) Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity. Emerg Microbes Infect 9:1415–1417. https://doi.org/10.1080/22221751.2020.1777906
van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, de Wit E, Munster VJ (2020) Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 382:1564–1567. https://doi.org/10.1056/NEJMc2004973
Edwards DA, Man JC, Brand P, Katstra JP, Sommerer K, Stone HA, Nardell E, Scheuch G (2004) Inhaling to mitigate exhaled bioaerosols. Proc Natl Acad Sci U S A 101:17383–17388. https://doi.org/10.1073/pnas.0408159101
Zhong M, Lin B, Pathak JL, Gao H, Young AJ, Wang X, Liu C, Wu K, Liu M, Chen JM, Huang J, Lee LH, Qi CL, Ge L, Wang L (2020) ACE2 and furin expressions in oral epithelial cells possibly facilitate COVID-19 infection via respiratory and fecal-oral routes. Front Med (Lausanne) 7:580796. https://doi.org/10.3389/fmed.2020.580796
Lakdawala SS, Jayaraman A, Halpin RA, Lamirande EW, Shih AR, Stockwell TB, Lin X, Simenauer A, Hanson CT, Vogel L, Paskel M, Minai M, Moore I, Orandle M, Das SR, Wentworth DE, Sasisekharan R, Subbarao K (2015) The soft palate is an important site of adaptation for transmissible influenza viruses. Nature 526:122–125. https://doi.org/10.1038/nature15379
Enserink M (2013) SARS: chronology of the epidemic. Science 339:1266–1271. https://doi.org/10.1126/science.339.6125.1266
Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24:490–502. https://doi.org/10.1016/j.tim.2016.03.003
Killerby ME, Biggs HM, Haynes A, Dahl RM, Mustaquim D, Gerber SI, Watson JT (2018) Human coronavirus circulation in the United States 2014–2017. J Clin Virol 101:52–56. https://doi.org/10.1016/j.jcv.2018.01.019
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ (2020) A new coronavirus associated with human respiratory disease in China. Nature 579:265–269. https://doi.org/10.1038/s41586-020-2008-3
Candido DS, Claro IM, de Jesus JG, Souza WM, Moreira FRR, Dellicour S, Mellan TA, du Plessis L, Pereira RHM, Sales FCS, Manuli ER, Theze J, Almeida L, Menezes MT, Voloch CM, Fumagalli MJ, Coletti TM, da Silva CAM, Ramundo MS, Amorim MR, Hoeltgebaum HH, Mishra S, Gill MS, Carvalho LM, Buss LF, Prete CA Jr, Ashworth J, Nakaya HI, Peixoto PS, Brady OJ, Nicholls SM, Tanuri A, Rossi AD, Braga CKV, Gerber AL, de Guimarães APC, Gaburo N Jr, Alencar CS, Ferreira ACS, Lima CX, Levi JE, Granato C, Ferreira GM, Francisco RS Jr, Granja F, Garcia MT, Moretti ML, Perroud MW Jr, Castineiras T, Lazari CS, Hill SC, de Souza Santos AA, Simeoni CL, Forato J, Sposito AC, Schreiber AZ, Santos MNN, de Sa CZ, Souza RP, Resende-Moreira LC, Teixeira MM, Hubner J, Leme PAF, Moreira RG, Nogueira ML, Brazil-Uk Centre for Arbovirus Discovery DG, Epidemiology Genomic Network, Ferguson NM, Costa SF, Proenca-Modena JL, Vasconcelos ATR, Bhatt S, Lemey P, Wu CH, Rambaut A, Loman NJ, Aguiar RS, Pybus OG, Sabino EC, Faria NR (2020) Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science 369:1255–1260. https://doi.org/10.1126/science.abd2161
Sender R, Bar-On YM, Gleizer S, Bernshtein B, Flamholz A, Phillips R, Milo R (2021) The total number and mass of SARS-CoV-2 virions. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2024815118
Tang S, Mao Y, Jones RM, Tan Q, Ji JS, Li N, Shen J, Lv Y, Pan L, Ding P, Wang X, Wang Y, MacIntyre CR, Shi X (2020) Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environ Int 144:106039. https://doi.org/10.1016/j.envint.2020.106039
Drozdzik A, Drozdzik M (2022) Oral pathology in COVID-19 and SARS-CoV-2 infection-molecular aspects. Int J Mol Sci 23. https://doi.org/10.3390/ijms23031431
Huang N, Perez P, Kato T, Mikami Y, Okuda K, Gilmore RC, Conde CD, Gasmi B, Stein S, Beach M, Pelayo E, Maldonado JO, Lafont BA, Jang SI, Nasir N, Padilla RJ, Murrah VA, Maile R, Lovell W, Wallet SM, Bowman NM, Meinig SL, Wolfgang MC, Choudhury SN, Novotny M, Aevermann BD, Scheuermann RH, Cannon G, Anderson CW, Lee RE, Marchesan JT, Bush M, Freire M, Kimple AJ, Herr DL, Rabin J, Grazioli A, Das S, French BN, Pranzatelli T, Chiorini JA, Kleiner DE, Pittaluga S, Hewitt SM, Burbelo PD, Chertow D, Consortium NC-A, Oral HCA, Craniofacial Biological Network, Frank K, Lee J, Boucher RC, Teichmann SA, Warner BM, Byrd KM (2021) SARS-CoV-2 infection of the oral cavity and saliva. Nat Med 27:892–903. https://doi.org/10.1038/s41591-021-01296-8
Casagrande M, Fitzek A, Spitzer M, Puschel K, Glatzel M, Krasemann S, Aepfelbacher M, Norz D, Lutgehetmann M, Pfefferle S, Schultheiss M (2022) Detection of SARS-CoV-2 genomic and subgenomic RNA in retina and optic nerve of patients with COVID-19. Br J Ophthalmol 106:1313–1317. https://doi.org/10.1136/bjophthalmol-2020-318618
Roden AC, Vrana JA, Koepplin JW, Hudson AE, Norgan AP, Jenkinson G, Yamaoka S, Ebihara H, Monroe R, Szabolcs MJ, Majumdar R, Moyer AM, Garcia JJ, Kipp BR (2021) Comparison of in situ hybridization, immunohistochemistry, and reverse transcription-droplet digital polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing in tissue. Arch Pathol Lab Med 145:785–796. https://doi.org/10.5858/arpa.2021-0008-SA
Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ, van Donselaar E, Riesebosch S, Kuijpers HJH, Schipper D, van de Wetering WJ, de Graaf M, Koopmans M, Cuppen E, Peters PJ, Haagmans BL, Clevers H (2020) SARS-CoV-2 productively infects human gut enterocytes. Science 369:50–54. https://doi.org/10.1126/science.abc1669
Salahudeen AA, Choi SS, Rustagi A, Zhu J, van Unen V, de la OS, Flynn RA, Margalef-Catala M, Santos AJM, Ju J, Batish A, Usui T, Zheng GXY, Edwards CE, Wagar LE, Luca V, Anchang B, Nagendran M, Nguyen K, Hart DJ, Terry JM, Belgrader P, Ziraldo SB, Mikkelsen TS, Harbury PB, Glenn JS, Garcia KC, Davis MM, Baric RS, Sabatti C, Amieva MR, Blish CA, Desai TJ, Kuo CJ (2020) Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature 588:670–675. https://doi.org/10.1038/s41586-020-3014-1
Bowe B, Xie Y, Al-Aly Z (2022) Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat Med 28:2398–2405. https://doi.org/10.1038/s41591-022-02051-3
Cabrera Martimbianco AL, Pacheco RL, Bagattini AM, Riera R (2021) Frequency, signs and symptoms, and criteria adopted for long COVID-19: a systematic review. Int J Clin Pract 75:e14357. https://doi.org/10.1111/ijcp.14357
Thompson RC, Simons NW, Wilkins L, Cheng E, Del Valle DM, Hoffman GE, Cervia C, Fennessy B, Mouskas K, Francoeur NJ, Johnson JS, Lepow L, Le Berichel J, Chang C, Beckmann AG, Wang YC, Nie K, Zaki N, Tuballes K, Barcessat V, Cedillo MA, Yuan D, Huckins L, Roussos P, Marron TU, Mount Sinai C-BT, Glicksberg BS, Nadkarni G, Heath JR, Gonzalez-Kozlova E, Boyman O, Kim-Schulze S, Sebra R, Merad M, Gnjatic S, Schadt EE, Charney AW, Beckmann ND (2022) Molecular states during acute COVID-19 reveal distinct etiologies of long-term sequelae. Nat Med. https://doi.org/10.1038/s41591-022-02107-4
Rafalowicz B, Wagner L, Rafalowicz J (2022) Long COVID oral cavity symptoms based on selected clinical cases. Eur J Dent 16:458–463. https://doi.org/10.1055/s-0041-1739445
Fabi M, Filice E, Biagi C, Andreozzi L, Palleri D, Mattesini BE, Rizzello A, Gabrielli L, Ghizzi C, Di Luca D, Caramelli F, De Fanti A, Lanari M (2021) Multisystem inflammatory syndrome following SARS-CoV-2 infection in children: one year after the onset of the pandemic in a high-incidence area. Viruses 13. https://doi.org/10.3390/v13102022
Miller AD, Zambrano LD, Yousaf AR, Abrams JY, Meng L, Wu MJ, Melgar M, Oster ME, Godfred Cato SE, Belay ED, Campbell AP, Group M-CSA (2022) Multisystem inflammatory syndrome in children-United States, February 2020-July 2021. Clin Infect Dis 75:e1165–e1175. https://doi.org/10.1093/cid/ciab1007
Belay ED, Godfred Cato S, Rao AK, Abrams J, Wyatt Wilson W, Lim S, Newton-Cheh C, Melgar M, DeCuir J, Webb B, Marquez P, Su JR, Meng L, Grome HN, Schlaudecker E, Talaat K, Edwards K, Barnett E, Campbell AP, Broder KR, Bamrah Morris S (2022) Multisystem inflammatory syndrome in adults after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) vaccination. Clin Infect Dis 75:e741–e748. https://doi.org/10.1093/cid/ciab936
Lai CC, Hsu CK, Hsueh SC, Yen MY, Ko WC, Hsueh PR (2022) Multisystem inflammatory syndrome in adults: characteristics, treatment, and outcomes. J Med Virol. https://doi.org/10.1002/jmv.28426
Bullard J, Dust K, Funk D, Strong JE, Alexander D, Garnett L, Boodman C, Bello A, Hedley A, Schiffman Z, Doan K, Bastien N, Li Y, Van Caeseele PG, Poliquin G (2020) Predicting infectious severe acute respiratory syndrome coronavirus 2 from diagnostic samples. Clin Infect Dis 71:2663–2666. https://doi.org/10.1093/cid/ciaa638
Sung A, Bailey AL, Stewart HB, McDonald D, Wallace MA, Peacock K, Miller C, Reske KA, O’Neil CA, Fraser VJ, Diamond MS, Burnham CD, Babcock HM, Kwon JH (2022) Isolation of SARS-CoV-2 in viral cell culture in immunocompromised patients with persistently positive RT-PCR results. Front Cell Infect Microbiol 12:804175. https://doi.org/10.3389/fcimb.2022.804175
Woodbridge Y, Amit S, Huppert A, Kopelman NM (2022) Viral load dynamics of SARS-CoV-2 delta and omicron variants following multiple vaccine doses and previous infection. Nat Commun 13:6706. https://doi.org/10.1038/s41467-022-33096-0
Abasiyanik MF, Flood B, Lin J, Ozcan S, Rouhani SJ, Pyzer A, Trujillo J, Zhen C, Wu P, Jumic S, Wang A, Gajewski TF, Wang P, Hartley M, Ameti B, Niemiec R, Fernando M, Aydogan B, Bethel C, Matushek S, Beavis KG, Agrawal N, Segal J, Tay S, Izumchenko E (2020) Sensitive detection and quantification of SARS-CoV-2 in saliva. medRxiv. https://doi.org/10.1101/2020.12.04.20241059
Abasiyanik MF, Flood B, Lin J, Ozcan S, Rouhani SJ, Pyzer A, Trujillo J, Zhen C, Wu P, Jumic S, Wang A, Gajewski TF, Wang P, Hartley M, Ameti B, Niemiec R, Fernando M, Mishra V, Savage P, Aydogan B, Bethel C, Matushek S, Beavis KG, Agrawal N, Segal J, Tay S, Izumchenko E (2021) Sensitive detection and quantification of SARS-CoV-2 in saliva. Sci Rep 11:12425. https://doi.org/10.1038/s41598-021-91835-7
Okoturo E, Amure M (2022) SARS-CoV-2 saliva testing using RT-PCR: a systematic review. Int J Infect Dis 121:166–171. https://doi.org/10.1016/j.ijid.2022.05.008
Carrouel F, Gadea E, Esparcieux A, Dimet J, Langlois ME, Perrier H, Dussart C, Bourgeois D (2021) Saliva quantification of SARS-CoV-2 in real-time PCR from asymptomatic or mild COVID-19 adults. Front Microbiol 12:786042. https://doi.org/10.3389/fmicb.2021.786042
Kornhaber MS, Florence T, Davis T, Kingsley K (2022) Assessment of oral human papillomavirus prevalence in pediatric and adult patients within a multi-ethnic clinic population. Dent J (Basel) 10. https://doi.org/10.3390/dj10040054
Menezes FDS, Latorre M, Conceicao GMS, Curado MP, Antunes JLF, Toporcov TN (2020) The emerging risk of oropharyngeal and oral cavity cancer in HPV-related subsites in young people in Brazil. PLoS One 15:e0232871. https://doi.org/10.1371/journal.pone.0232871
Nielsen KJ, Jakobsen KK, Jensen JS, Gronhoj C, Von Buchwald C (2021) The effect of prophylactic HPV vaccines on oral and oropharyngeal HPV infection-a systematic review. Viruses 13. https://doi.org/10.3390/v13071339
Smith DH, Raslan S, Samuels MA, Iglesias T, Buitron I, Deo S, Daunert S, Thomas GR, Califano J, Franzmann EJ (2021) Current salivary biomarkers for detection of human papilloma virus-induced oropharyngeal squamous cell carcinoma. Head Neck 43:3618–3630. https://doi.org/10.1002/hed.26830
Tsushima Y, Uno N, Sasaki D, Morinaga Y, Hasegawa H, Yanagihara K (2015) Quantitative RT-PCR evaluation of a rapid influenza antigen test for efficient diagnosis of influenza virus infection. J Virol Methods 212:76–79. https://doi.org/10.1016/j.jviromet.2014.10.019
Yamayoshi S, Sakai-Tagawa Y, Koga M, Akasaka O, Nakachi I, Koh H, Maeda K, Adachi E, Saito M, Nagai H, Ikeuchi K, Ogura T, Baba R, Fujita K, Fukui T, Ito F, Hattori SI, Yamamoto K, Nakamoto T, Furusawa Y, Yasuhara A, Ujie M, Yamada S, Ito M, Mitsuya H, Omagari N, Yotsuyanagi H, Iwatsuki-Horimoto K, Imai M, Kawaoka Y (2020) Comparison of rapid antigen tests for COVID-19. Viruses 12. https://doi.org/10.3390/v12121420
Yap T, Khor S, Kim JS, Kim J, Kim SY, Kern JS, Martyres R, Varigos G, Chan HT, McCullough MJ, Thomas ML, Scardamaglia L (2021) Intraoral human herpes viruses detectable by PCR in majority of patients. Oral Dis 27:378–387. https://doi.org/10.1111/odi.13523
To KKW, Yip CCY, Lai CYW, Wong CKH, Ho DTY, Pang PKP, Ng ACK, Leung KH, Poon RWS, Chan KH, Cheng VCC, Hung IFN, Yuen KY (2019) Saliva as a diagnostic specimen for testing respiratory virus by a point-of-care molecular assay: a diagnostic validity study. Clin Microbiol Infect 25:372–378. https://doi.org/10.1016/j.cmi.2018.06.009
Galar A, Catalan P, Vesperinas L, Miguens I, Munoz I, Garcia-Espona A, Sevillano JA, Andueza JA, Bouza E, Munoz P (2021) Use of saliva swab for detection of influenza virus in patients admitted to an emergency department. Microbiol Spectr 9:e0033621. https://doi.org/10.1128/Spectrum.00336-21
To KK, Lu L, Yip CC, Poon RW, Fung AM, Cheng A, Lui DH, Ho DT, Hung IF, Chan KH, Yuen KY (2017) Additional molecular testing of saliva specimens improves the detection of respiratory viruses. Emerg Microbes Infect 6:e49. https://doi.org/10.1038/emi.2017.35
Shen L, Niu J, Wang C, Huang B, Wang W, Zhu N, Deng Y, Wang H, Ye F, Cen S, Tan W (2019) High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J Virol 93. https://doi.org/10.1128/JVI.00023-19
Meyers C, Robison R, Milici J, Alam S, Quillen D, Goldenberg D, Kass R (2021) Lowering the transmission and spread of human coronavirus. J Med Virol 93:1605–1612. https://doi.org/10.1002/jmv.26514
Bernstein D, Schiff G, Echler G, Prince A, Feller M, Briner W (1990) In vitro virucidal effectiveness of a 0.12%-chlorhexidine gluconate mouthrinse. J Dent Res 69:874–876. https://doi.org/10.1177/00220345900690030901
Mukherjee PK, Esper F, Buchheit K, Arters K, Adkins I, Ghannoum MA, Salata RA (2017) Randomized, double-blind, placebo-controlled clinical trial to assess the safety and effectiveness of a novel dual-action oral topical formulation against upper respiratory infections. BMC Infect Dis 17:74. https://doi.org/10.1186/s12879-016-2177-8
Sethuraman N, Jeremiah SS, Ryo A (2020) Interpreting diagnostic tests for SARS-CoV-2. JAMA 323:2249–2251. https://doi.org/10.1001/jama.2020.8259