The role of the opioid system in decision making and cognitive control: A review

Springer Science and Business Media LLC - Tập 19 - Trang 435-458 - 2019
Henk van Steenbergen1,2, Marie Eikemo3,4, Siri Leknes4
1Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, the Netherlands
2Leiden Institute for Brain and Cognition, Leiden, The Netherlands
3Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
4Department of Psychology, University of Oslo, Oslo, Norway

Tóm tắt

The opioid system regulates affective processing, including pain, pleasure, and reward. Restricting the role of this system to hedonic modulation may be an underestimation, however. Opioid receptors are distributed widely in the human brain, including the more “cognitive” regions in the frontal and parietal lobes. Nonhuman animal research points to opioid modulation of cognitive and decision-making processes. We review emerging evidence on whether acute opioid drug modulation in healthy humans can influence cognitive function, such as how we choose between actions of different values and how we control our behavior in the face of distracting information. Specifically, we review studies employing opioid agonists or antagonists together with experimental paradigms of reward-based decision making, impulsivity, executive functioning, attention, inhibition, and effort. Although this field is still in its infancy, the emerging picture suggests that the mu-opioid system can influence higher-level cognitive function via modulation of valuation, motivation, and control circuits dense in mu-opioid receptors, including orbitofrontal cortex, basal ganglia, amygdalae, anterior cingulate cortex, and prefrontal cortex. The framework that we put forward proposes that opioids influence decision making and cognitive control by increasing the subjective value of reward and reducing aversive arousal. We highlight potential mechanisms that might underlie the effects of mu-opioid signaling on decision making and cognitive control and provide directions for future research.

Tài liệu tham khảo

Allen, M. E., & Coen, D. (1987). Naloxone blooking of running-induced mood changes. Annals of Sports Medicine, 3, 190–195. Anderson, W. S., Sheth, R. N., Bencherif, B., Frost, J. J., & Campbell, J. N. (2002). Naloxone increases pain induced by topical capsaicin in healthy human volunteers. Pain, 99, 207–216. Arnsten, A. F. T., Neville, H. J., Hillyard, S. A., Janowsky, D. S., Salk, T., Diego, S., … May, R. (1984). Naloxone selective increases information measures processing in humans. Journal of Neuroscience, 4, 2912–9. Arnsten, A. F. T., Segal, D. S., Loughlin, S. E., Roberts, D. C. S., Jolla, L., & Diego, S. (1981). Evidence for an interaction of opioid and noradrenergic locus coeruleus systems in the regulation of environmental stimulus-directed behavior. Brain Research, 222, 351–363. Arnsten, A. F. T., Segal, D. S., Neville, H. J., Hillyard, S. A., Janowsky, D. S., Judd, L. L., & Bloom, F. E. (1983). Naloxone augments electrophysiological signs of selective attention in man. Nature, 304, 725–727. Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition a neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529–550. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. Atlas, L. Y., Wielgosz, J., Whittington, R. A., & Wager, T. D. (2014). Specifying the non-specific factors underlying opioid analgesia: Expectancy, attention, and affect. Psychopharmacology, 231, 813–823. Badiani, A., Belin, D., Epstein, D., Calu, D., & Shaham, Y. (2011). Opiate versus psychostimulant addiction: the differences do matter. Nature Reviews Neuroscience, 12, 685–700. Baldo, B. A. (2016). Prefrontal cortical opioids and dysregulated motivation: A network hypothesis. Trends in Neurosciences, 39, 366–377. Bandura, A., Cioffi, D., Taylor, C. B., & Brouillard, M. E. (1988). Perceived self-efficacy in coping with cognitive stressors and opioid activation. Journal of Personality and Social Psychology, 55, 479–488. Barbano, M. F., & Cador, M. (2007). Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology, 191, 497–506. Barch, D. M., Pagliaccio, D., & Luking, K. (2015). Mechanisms underlying motivational deficits in psychopathology: similarities and differences in depression and schizophrenia. In Behavioral neuroscience of motivation (pp. 411–449). Springer. Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427. Beard, C., Donahue, R. J., Dillon, D. G., Van’t Veer, A., Webber, C., Lee, J., … Carroll, F. I. (2015). Abnormal error processing in depressive states: a translational examination in humans and rats. Translational Psychiatry, 5, e564. Berkman, E. T., Hutcherson, C. A., Livingston, J. L., Kahn, L. E., & Inzlicht, M. (2017). Self-control as value-based choice. Current Directions in Psychological Science, 26, 422–428 . Berna, C., Leknes, S., Ahmad, A. H., Mhuircheartaigh, R. N., Goodwin, G. M., & Tracey, I. (2018). Opioid-independent and opioid-mediated modes of pain modulation. Journal of Neuroscience, 38, 9047–9058. Berridge, K. C. (2007). The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology, 191, 391–431. Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86, 646–664. Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: “liking”, “wanting”, and learning. Current Opinion in Pharmacology, 9, 65–73. Bershad, A. K., Jaffe, J. H., Childs, E., & de Wit, H. (2015). Opioid partial agonist buprenorphine dampens responses to psychosocial stress in humans. Psychoneuroendocrinology, 52, 281–288. Bershad, A. K., Miller, M. A., Norman, G. J., & de Wit, H. (2018). Effects of opioid-and non-opioid analgesics on responses to psychosocial stress in humans. Hormones and Behavior, 102, 41–47. Bershad, A. K., Seiden, J. A., & de Wit, H. (2016). Effects of buprenorphine on responses to social stimuli in healthy adults. Psychoneuroendocrinology, 63, 43–49. Berthier, M., Starkstein, S., & Leiguarda, R. (1988). Asymbolia for pain: A sensory-limbic disconnection syndrome. Annals of Neurology, 24, 41–49. Bickel, W. K., Yi, R., Landes, R. D., Hill, P. F., & Baxter, C. (2011). Remember the future: Working memory training decreases delay discounting among stimulant addicts. Biological Psychiatry, 69, 260–265. Black, M. L., Hill, J. L., & Zacny, J. P. (1999). Behavioral and physiological effects of remifentanil and alfentanil in healthy volunteers. Anesthesiology, 90, 718–726. Boettiger, C. A., Kelley, E. A., Mitchell, J. M., D’Esposito, M., & Fields, H. L. (2009). Now or later? An fMRI study of the effects of endogenous opioid blockade on a decision-making network. Pharmacology Biochemistry and Behavior, 93, 291–299. Bostwick, J. M., & Bucci, J. A. (2008). Internet sex addiction treated with naltrexone. Mayo Clinic Proceedings, 83, 226–230. Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive Affective & Behavioral Neuroscience 7, 356–366. Botvinick, M. M., & Braver, T. S. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66, 83–113. Botvinick, M. M., Braver, T. S., Barch, D. M. M., Carter, C. S. S., & Cohen, J. D. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. Bradley, C. M., & Nicholson, A N. (1986). Effects of a mu-opioid receptor agonist (codeine phosphate) on visuo-motor coordination and dynamic visual acuity in man. British Journal of Clinical Pharmacology, 22, 507–12. Bradley, C. M., & Nicholson, A. N. (1987). Studies on performance with aspirin and paracetamol and with the centrally acting analgesics meptazinol and pentazocine. European Journal of Clinical Pharmacology, 32, 135–139. Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., … Somerville, L. H. (2014). Mechanisms of motivation-cognition interaction: challenges and opportunities. Cognitive, Affective & Behavioral Neuroscience, 443–472. Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68, 815–834. Buchel, C., Miedl, S., & Sprenger, C. (2018). Hedonic processing in humans is mediated by an opioidergic mechanism in a mesocorticolimbic system. ELife, 7:e39648. Calo, G., Guerrini, R., Rizzi, A., Salvadori, S., & Regoli, D. (2000). Pharmacology of nociceptin and its receptor: a novel therapeutic target. British Journal of Pharmacology, 129, 1261–1283. Castro, D. C., & Berridge, K. C. (2017). Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. Proceedings of the National Academy of Sciences, 114, E9125–E9134. Chaijale, N. N., Curtis, A. L., Wood, S. K., Zhang, X. Y., Bhatnagar, S., Reyes, B. A., … Valentino, R. J. (2013). Social stress engages opioid regulation of locus coeruleus norepinephrine neurons and induces a state of cellular and physical opiate dependence. Neuropsychopharmacology, 38, 1833–1843. Chelnokova, O., Laeng, B., Eikemo, M., Riegels, J., Løseth, G., Maurud, H., … Leknes, S. (2014). Rewards of beauty: the opioid system mediates social motivation in humans. Molecular Psychiatry, 19, 746–747. Chelnokova, O., Laeng, B., Løseth, G., Eikemo, M., Willoch, F., & Leknes, S. (2016). The μ-opioid system promotes visual attention to faces and eyes. Social Cognitive and Affective Neuroscience, 11, 1902–1909. Cherrier, M. M., Amory, J. K., Ersek, M., Risler, L., & Shen, D. D. (2009). Comparative cognitive and subjective side effects of immediate-release oxycodone in healthy middle-aged and older adults. Journal of Pain, 10, 1038–1050. Chiew, K. S., & Braver, T. S. (2011). Positive affect versus reward: emotional and motivational influences on cognitive control. Frontiers in Psychology, 2, 279. Cleeland, C. S., Nakamura, Y., Howland, E. W., Morgan, N. R., Edwards, K. R., & Backonja, M. (1996). Effects of oral morphine on cold pressor tolerance time and neuropsychological performance. Neuropsychopharmacology, 15, 252–62. Cohen, R. M., Murphy, D. L., Cohen, R., Weingartner, H., & Pickar, D. (1983). High-dose naloxone affects task performance in normal subject, 36, 127–136. Comer, S. D., Sullivan, M. A., Vosburg, S. K., Kowalczyk, W. J., & Houser, J. (2010). Abuse liability of oxycodone as a function of pain and drug use history. Drug and Alcohol Dependence, 109, 130–138. Conley, K. M., Toledano, A. Y., Apfelbaum, J. L., & Zacny, J. P. (1997). Modulating effects of a cold water stimulus on opioid effects in volunteers. Psychopharmacology (Berl), 131, 313–320. Cools, R. (2015). The cost of dopamine for dynamic cognitive control. Current Opinion in Behavioral Sciences, 4, 1–8. Corbett, A. D. (2009). 75 Years of opioid research: The exciting but vain quest for the Holy Grail. British Journal of Pharmacology, 147, S153–S162. Corre, J., van Zessen, R., Loureiro, M., Patriarchi, T., Tian, L., Pascoli, V., & Lüscher, C. (2018). Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. Elife, 7, e39945. Costa, P. T., & McCrae, R. R. (1992). Normal personality assessment in clinical practice: The NEO Personality Inventory. Psychological Assessment, 4, 5. Daniel, M., Martin, A. D., & Carter, J. (1992). Opiate receptor blockade by naltrexone and mood state after acute physical activity. British Journal of Sports Medicine, 26, 111–115. De Quincey, T. (2000). Confessions of an English Opium-eater. The Works of Thomas De Quincey, Vol. 2: Confessions of an English Opium-Eater, 1821–1856 (Vol. 89). Oxford University Press. Dreisbach, G., & Fischer, R. (2012). Conflicts as aversive signals. Brain and Cognition, 78, 94–98. Dreisbach, G., & Fischer, R. (2015). Conflicts as aversive signals for control adaptation. Current Directions in Psychological Science, 24, 255–260. Dreisbach, G., & Goschke, T. (2004). How positive affect modulates cognitive control: Reduced perseveration at the cost of increased distractibility. Journal of Experimental Psychology-Learning Memory and Cognition, 30, 343–353. Drewnowski, A., Krahn, D. D., Demitrack, M. A., Nairn, K., & Gosnell, B. A. (1992). Taste responses and preferences for sweet high-fat foods: Evidence for opioid involvement. Physiology and Behavior, 51, 371–379. Efremidze, L., Sarraf, G., Miotto, K., & Zak, P. J. (2017). The neural inhibition of learning increases asset market bubbles: Experimental evidence. Journal of Behavioral Finance, 18, 114–124. Ehrich, E., Turncliff, R., Du, Y., Leigh-Pemberton, R., Fernandez, E., Jones, R., & Fava, M. (2015). Evaluation of opioid modulation in major depressive disorder. Neuropsychopharmacology, 40, 1448–1455. Eikemo, M., Biele, G., Willoch, F., Thomsen, L., & Leknes, S. (2017). Opioid modulation of value-based decision-making in healthy humans. Neuropsychopharmacology, 42, 1833–1840. Eikemo, M., Løseth, G. E., Johnstone, T., Gjerstad, J., Willoch, F., & Leknes, S. (2016). Sweet taste pleasantness is modulated by morphine and naltrexone. Psychopharmacology, 1–13. Eippert, F., Bingel, U., Schoell, E., Yacubian, J., & Büchel, C. (2008). Blockade of endogenous opioid neurotransmission enhances acquisition of conditioned fear in humans. Journal of Neuroscience, 28, 5465–5472. Ersek, M., Cherrier, M. M., Overman, S. S., & Irving, G. A. (2004). The cognitive effects of opioids. Pain Management Nursing, 5, 75–93. Escher, M., Daali, Y., Chabert, J., Hopfgartner, G., Dayer, P., Desmeules, J., & J, E. M. Y. J. G. P. (2007). Pharmacokinetic and pharmacodynamic properties of buprenorphine after a single intravenous administration in healthy volunteers: a randomized, double-blind, placebo-controlled, crossover study. Clinical Therapeutics, 29, 1620–1631. Evans, W. O., & Smith, R. P. (1964). Some effects of morphine and amphetamine on intellectual functions and mood. Psychopharmacologia, 6, 49–56. Evans, W. O., & Witt, N. F. (1966). The interaction of high altitude and psychotropic drug action. Psychopharmacologia, 10, 184–188. Fava, M., Memisoglu, A., Thase, M. E., Bodkin, J. A., Trivedi, M. H., De Somer, M., … Ehrich, E. (2016). Opioid modulation with buprenorphine/samidorphan as adjunctive treatment for inadequate response to antidepressants: A randomized double-blind placebo-controlled trial. American Journal of Psychiatry, 173, 499–508. Fichna, J., Janecka, A., Costentin, J., & Do Rego, J.-C. (2007). The endomorphin system and its evolving neurophysiological role. Pharmacological Reviews, 59, 88. Fields, H. L., & Margolis, E. B. (2015). Understanding opioid reward. Trends in Neurosciences, 38, 217–225. File, S. E., & Silverstone, T. (1981). Naloxone changes self-ratings but not performance in normal subjects. Psychopharmacology, 74, 353–354. Friswell, J., Phillips, C., Holding, J., Morgan, C. J. A., Brandner, B., & Curran, H. V. (2008). Acute effects of opioids on memory functions of healthy men and women. Psychopharmacology, 198, 243–250. Gandhi, W., Becker, S., & Schweinhardt, P. (2013). Pain increases motivational drive to obtain reward, but does not affect associated hedonic responses: A behavioural study in healthy volunteers. European Journal of Pain, 17, 1093–1103. Gendolla, G. H. E., Wright, R. A., & Richter, M. (2011). Effort intensity: Studies of cardiovascular response. In R. Ryan (Ed.), The Oxford handbook on motivation. New York: Oxford University Press. Ghitza, U. E., Preston, K. L., Epstein, D. H., Kuwabara, H., Endres, C. J., Bencherif, B., … Gorelick, D. A. (2010). Brain mu-opioid receptor binding predicts treatment outcome in cocaine-abusing outpatients. Biological Psychiatry, 68, 697–703. Ghoneim, M. M., Mewaldt, S. P., & Thatcher, J. W. (1975). The effect of diazepam and fentanyl on mental, psychomotor and electroencephalographic functions and their rate of recovery. Psychopharmacologia, 44, 61–66. Giordano, L., Bickel, W., Loewenstein, G., Jacobs, E., Marsch, L., & Badger, G. (2002). Mild opioid deprivation increases the degree that opioid-dependent outpatients discount delayed heroin and money. Psychopharmacology, 163, 174–182. Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwarz, Y., Ghosh, S. S., Maumet, C., … Poline, J.-B. (2015). NeuroVault.org: A web-based repository for collecting and sharing unthresholded statistical maps of the human brain. Frontiers in Neuroinformatics, 9, 8. Gospic, K., Gunnarsson, T., Fransson, P., Ingvar, M., Lindefors, N., & Petrovic, P. (2007). Emotional perception modulated by an opioid and a cholecystokinin agonist. Psychopharmacology, 197, 295–307. Grant, J. E., Kim, S. W., & Odlaug, B. L. (2009). A double-blind, placebo-controlled study of the opiate antagonist, naltrexone, in the treatment of kleptomania. Biological Psychiatry, 65, 600–606. Grevert, P., & Goldstein, A. (1977). Effects of naloxone on experimentally induced ischemic pain and on mood in human subjects. Proceedings of the National Academy of Sciences, 74, 1291–1294. Grossman, A., Bouloux, P., Price, P., Drury, P. L., Lam, K. S. L., Turner, T., … Sutton, J. (1984). The role of opioid peptides in the hormonal responses to acute exercise in man. Clinical Science, 67, 483–491. Haaker, J., Yi, J., Petrovic, P., & Olsson, A. (2017). Endogenous opioids regulate social threat learning in humans. Nature Communications, 8, 15495. Hanks, G., O’Neill, W., Simpson, P., Wesnes, K., & A, I. (1995). The cognitive and psychomotor effects of opioid analgesics. II. A randomized controlled trial of single doses of morphine, lorazepam and placebo in healthy subjects. European Journal of Clinical Pharmacology, 48, 455–460. Hayen, A., Wanigasekera, V., Faull, O. K., Campbell, S. F., Garry, P. S., Raby, S. J. M., … Herigstad, M. (2017). Opioid suppression of conditioned anticipatory brain responses to breathlessness. Neuroimage, 150, 383–394. Henriksen, G., & Willoch, F. (2008). Imaging of opioid receptors in the central nervous system. Brain, 131, 1171–1196. Hill, J. L., & Zacny, J. P. (2000). Comparing the subjective, psychomotor, physiological effects of intravenous hydromorphone and morphine healthy volunteers. Psychopharmacology, 152, 31–39. Hiura, M., Sakata, M., Ishii, K., Toyohara, J., Oda, K., Nariai, T., & Ishiwata, K. (2017). Central μ-opioidergic system activation evoked by heavy and severe-intensity cycling exercise in humans: a pilot study using positron emission tomography with 11C-Carfentanil. International Journal of Sports Medicine, 38, 19–26. Hockey, G. R. J. R. J. (1997). Compensatory control in the regulation of human performance under stress and high workload: A cognitive-energetical framework. Biological Psychology, 45, 73–93. Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends in Cognitive Sciences, 16, 122–128. Hsu, D. T., Sanford, B. J., Meyers, K. K., Love, T. M., Hazlett, K. E., Wang, H., … Zubieta, J. K. (2013). Response of the μ-opioid system to social rejection and acceptance. Molecular Psychiatry, 18, 1211–1217. Inzlicht, M., Bartholow, B. D., & Hirsh, J. B. (2015). Emotional foundations of cognitive control. Trends in Cognitive Sciences, 19, 1–7. Inzlicht, M., Shenhav, A., & Olivola, C. Y. (2018). The effort paradox: Effort is both costly and valued. Trends in Cognitive Sciences, 22, 337–349. Isen, A. M., & Means, B. (1983). The influence of positive affect on decision-making strategy. Social Cognition, 2, 18–31. Jääskeläinen, I. P., Hirvonen, J., Kujala, T., Alho, K., Eriksson, C. J. P., Lehtokoski, A., … Sillanaukee, P. (1998). Effects of naltrexone and ethanol on auditory event-related brain potentials. Alcohol, 15, 105–111. Jacob, J. J. C., Michaud, G. M., & Tremblay, E. C. (1979). Mixed agonist-antagonist opiates and physical dependence. British Journal of Clinical Pharmacology, 7, 291S–296S. Jacobson, M. L., Wulf, H. A., Browne, C. A., & Lucki, I. (2018). Opioid modulation of cognitive impairment in depression. In S. O’Mara (Ed.), Progress in brain research (1st ed., Vol. 239, pp. 1–48). Amsterdam: Elsevier B.V. Jarvik, L. F., Simpson, J. H., Guthrie, D., & Liston, E. H. (1981). Morphine, experimental pain, and psychological reactions. Psychopharmacology, 75, 124–131. Jayaram-Lindström, N., Guterstam, J., Häggkvist, J., Ericson, M., Malmlöf, T., Schilström, B. Franck, J. (2017). Naltrexone modulates dopamine release following chronic, but not acute amphetamine administration: a translational study. Translational Psychiatry, 7, e1104. Jayaram-Lindström, N., Wennberg, P., Hurd, Y. L., & Franck, J. (2004). Effects of naltrexone on the subjective response to amphetamine in healthy volunteers. Journal of Clinical Psychopharmacology, 24, 665–669. Johnson, B. A. (2006). A synopsis of the pharmacological rationale, properties and therapeutic effects of depot preparations of naltrexone for treating alcohol dependence. Expert Opinion on Pharmacotherapy, 7, 1065–1073. Johnson, S. W., & North, R. A. (1992). Opioids excite dopamine neurons by hyperpolarization of local interneurons. Journal of Neuroscience, 12, 483–488. Kahneman, D. (1973). Attention and effort. Englewood Cliffs, New Jersey: Prentice-Hall. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decisions under risk. Econometrica, 2, 263–291. Kieres, A. K., Hausknecht, K. A., Farrar, A. M., Acheson, A., de Wit, H., & Richards, J. B. (2004). Effects of morphine and naltrexone on impulsive decision making in rats. Psychopharmacology, 173, 167–174. Knotkova, H., Fine, P. G., & Portenoy, R. K. (2009). The puzzle of processing speed, memory, and executive function impairments in schizophrenia: Fitting the pieces together. Journal of Pain and Symptom Management, 38, 426–439. Knowles, E. E. M., Weiser, M., David, A. S., Glahn, D. C., Davidson, M., & Reichenberg, A. (2015). The Puzzle of Processing Speed, Memory, and Executive Function Impairments in Schizophrenia: Fitting the Pieces Together. Biological Psychiatry, 78, 786–793. Koepp, M. J., Hammers, A., Lawrence, A. D., Asselin, M. C., Grasby, P. M., & Bench, C. J. (2009). Evidence for endogenous opioid release in the amygdala during positive emotion. NeuroImage, 44, 252–256. Koob, G. F., & Le Moal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24, 97. Kornetsky, C., Humphries, O., & Evarts, E. V. (1957). Comparison of Psychological Effects of Certain Centrally Acting Drugs in Man. Archives of Neurology And Psychiatry, 77, 318–324. Kringelbach, M. L., & Berridge, K. C. (2009). Towards a functional neuroanatomy of pleasure and happiness. Trends in Cognitive Sciences, 13, 479–487. Kuipers, M., Richter, M., Scheepers, D., Immink, M. A., Sjak-Shie, E., & van Steenbergen, H. (2017). How effortful is cognitive control? Insights from a novel method measuring single-trial evoked beta-adrenergic cardiac reactivity. International Journal of Psychophysiology, 119, 87–92. Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. Behavioral and Brain Sciences, 36, 661–726. Kut, E., Candia, V., von Overbeck, J., Pok, J., Fink, D., & Folkers, G. (2011). Pleasure-Related Analgesia Activates Opioid-Insensitive Circuits. Journal of Neuroscience, 31, 4148–4153. Lahti, T., Halme, J. T., Pankakoski, M., Sinclair, D., & Alho, H. (2010). Treatment of pathological gambling with naltrexone pharmacotherapy and brief intervention: A pilot study. Psychopharmacology Bulletin, 43, 37–44. Lakens, D., & Evers, E. R. K. (2014). Sailing from the seas of chaos into the corridor of stability: Practical recommendations to increase the informational value of studies. Perspectives on Psychological Science, 9, 278–292. Landes, R. D., Christensen, D. R., & Bickel, W. K. (2012). Delay discounting decreases in those completing treatment for opioid dependence. Experimental and Clinical Psychopharmacology, 20, 302–309. Laredo, S. A., Steinman, M. Q., Robles, C. F., Ferrer, E., Ragen, B. J., & Trainor, B. C. (2015). Effects of defeat stress on behavioral flexibility in males and females: Modulation by the mu-opioid receptor. European Journal of Neuroscience, 41, 434–441. Laurent, V., Morse, A. K., & Balleine, B. W. (2015). The role of opioid processes in reward and decision-making. British Journal of Pharmacology, 172, 449–459. Lee, H. K., & Wang, S. C. (1975). Mechanism of morphine-induced miosis in the dog. The Journal of Pharmacology and Experimental Therapeutics, 192, 415–31. Leknes, S., & Tracey, I. (2008). A common neurobiology for pain and pleasure. Nature Reviews Neuroscience, 9, 314–320. Light, S. N., Bieliauskas, L. A., & Zubieta, J.-K. (2017). “Top-down” mu-opioid system function in humans: Mu-opioid receptors in ventrolateral prefrontal cortex mediate the relationship between hedonic tone and executive function in major depressive disorder. The Journal of Neuropsychiatry and Clinical Neurosciences, 29, 357–364. Lobmaier, P. P., Kunøe, N., Gossop, M., & Waal, H. (2011). Naltrexone depot formulations for opioid and alcohol dependence: A systematic review. CNS Neuroscience and Therapeutics, 17, 629–636. Loseth, G. E., Eikemo, M., Isager, P., Holmgren, J., Laeng, B., Vindenes, V., … Hjørnevik, T. (2018). Morphine reduced perceived anger from neutral and implicit emotional expressions. Psychoneuroendocrinology, 91, 123–131. Loseth, G. E., Ellingsen, D.-M., & Leknes, S. (2014). State-dependent mu-opioid modulation of social motivation. Frontiers in Behavioral Neuroscience, 8, 1–15. Lovallo, W. R., Enoch, M. A., Acheson, A., Cohoon, A. J., Sorocco, K. H., Hodgkinson, C. A., … Goldman, D. (2015). Cortisol stress response in men and women modulated differentially by the mu-opioid receptor gene polymorphism OPRM1 A118G. Neuropsychopharmacology, 40, 2546–2554. Love, T. M., Stohler, C. S., & Zubieta, J.-K. (2009). Positron emission tomography measures of endogenous opioid neurotransmission and impulsiveness traits in humans. Archives of General Psychiatry, 66, 1124–1134. Lutz, P. E., & Kieffer, B. L. (2013). The multiple facets of opioid receptor function: implications for addiction. Current Opinion in Neurobiology, 23, 473–479. MacDonald, F., Gough, K., Nicoll, R., & Dow, R. (1989). Psychomotor effects of ketorolac in comparison with buprenorphine and diclofenac. British Journal of Clinical Pharmacology, 27, 453–459. Mahler, S. V, & Berridge, K. C. (2012). What and when to “want”? Amygdala-based focusing of incentive salience upon sugar and sex. Psychopharmacology, 221, 407–426. Marsch, L. A., Bickel, W. K., Badger, G. J., Rathmell, J. P., Swedberg, M. D. B., Jonzon, B., & Norsten-Hoog, C. (2001). Effects of infusion rate of intravenously administered morphine on physiological, psychomotor, and self-reported measures in humans. Journal of Pharmacology and Experimental Therapeutics, 299, 1056–1065. Martín del Campo, A. F., McMurray, R. G., Besser, G. M., & Grossman, A. (1992). Effect of 12-hour infusion of naloxone on mood and cognition in normal male volunteers. Biological Psychiatry, 32, 344–353. Mayberg, H. S., & Frost, J. J. (1990). Opiate receptors. In Quantitative imaging: neuroreceptors, neurotransmitters, and enzymes (pp. 81–95). New York: Raven Press. Mick, I., Myers, J., Ramos, A. C., Stokes, P. R. A., Erritzoe, D., Colasanti, A., … Waldman, A. D. (2016). Blunted endogenous opioid release following an oral amphetamine challenge in pathological gamblers. Neuropsychopharmacology, 41, 1742. Minozzi, S., Amato, L., Vecchi, S., Davoli, M., Kirchmayer, U., & Verster, A. (2011). Oral naltrexone maintenance treatment for opioid dependence. Cochrane Database Syst Rev, CD001333. Mitchell, J. M., Tavares, V. C., Fields, H. L., D’Esposito, M., & Boettiger, C. A. (2007). Endogenous opioid blockade and impulsive responding in alcoholics and healthy controls. Neuropsychopharmacology, 32, 439–449. Mouaffak, F., Leite, C., Hamzaoui, S., Benyamina, A., Laqueille, X., & Kebir, O. (2017). Naltrexone in the treatment of broadly defined behavioral addictions: A review and meta-analysis of randomized controlled trials. European Addiction Research, 23, 204–210. Mucha, R. F., & Iversen, S. D. (1984). Reinforcing properties of morphine and naloxone revealed by conditioned place preferences: a procedural examination. Psychopharmacology, 82, 241–247. Murray, E., Brouwer, S., McCutcheon, R., Harmer, C. J., Cowen, P. J., & McCabe, C. (2014). Opposing neural effects of naltrexone on food reward and aversion: implications for the treatment of obesity. Psychopharmacology, 231, 4323–4335. Murray, R. B., Adler, M. W., & Korczyn, A. D. (1983). The pupillary effects of oploids. Life Sciences. Nestor, L. J., Murphy, A., McGonigle, J., Orban, C., Reed, L., Taylor, E., … Robbins, T. W. (2017). Acute naltrexone does not remediate fronto-striatal disturbances in alcoholic and alcoholic polysubstance-dependent populations during a monetary incentive delay task. Addiction Biology, 22, 1576–1589. Notebaert, W., & Braem, S. (2016). Parsing the effect of reward on cognitive control. In T. S. Braver (Ed.), Motivation and cognitive control (pp. 105–122). New York, NY: Psychology Press. Nummenmaa, L., Saanijoki, T., Tuominen, L., Hirvonen, J., Tuulari, J. J., Nuutila, P., & Kalliokoski, K. (2018). Mu-opioid receptor system mediates reward processing in humans. Nature Communications, 9, 1500. Nummenmaa, L., & Tuominen, L. (2018). Opioid system and human emotions. British Journal of Pharmacology, 175, 2737–2749. Nutt, D. J., Lingford-Hughes, A., Erritzoe, D., & Stokes, P. R. (2015). The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci, 16, 305–312. Oliveto, A. H., Bickel, W. K., Kamien, J. B., Hughes, J. R., & Higgins, S. T. (1994). Effects of diazepam and hydromorphone in triazolam-trained humans under a novel-response drug discrimination procedure. Psychopharmacology, 114, 417–423. Parker, L. A., Maier, S., Rennie, M., & Crebolder, J. (1992). Morphine- and naltrexone-induced modification of palatability: Analysis by the taste reactivity test. Behavioral Neuroscience, 106, 999–1010. Pasternak, G. W. (2001). Insights into mu opioid pharmacology: The role of mu opioid receptor subtypes. Life Sciences, 68, 2213–2219. Pattij, T., Schetters, D., Janssen, M. C. W., Wiskerke, J., & Schoffelmeer, A. N. M. (2009). Acute effects of morphine on distinct forms of impulsive behavior in rats. Psychopharmacology, 205, 489–502. Peciña, M., Karp, J. F., Mathew, S., Todtenkopf, M. S., Ehrich, E. W., & Zubieta, J. K. (2019). Endogenous opioid system dysregulation in depression: implications for new therapeutic approaches. Molecular Psychiatry, 24, 576–587. Peciña, S., & Berridge, K. C. (2013). Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered “wanting” for reward: Entire core and medial shell mapped as substrates for PIT enhancement. European Journal of Neuroscience, 37, 1529–1540. Peciña, S., & Smith, K. S. (2010). Hedonic and motivational roles of opioids in food reward: Implications for overeating disorders. Pharmacology Biochemistry and Behavior, 97, 34–46. Pessoa, L. (2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13, 160–166. Petrovic, P., Pleger, B., Seymour, B., Kloppel, S., De Martino, B., Critchley, H., & Dolan, R. J. (2008). Blocking central opiate function modulates hedonic impact and anterior cingulate response to rewards and losses. Journal of Neuroscience, 28, 10509–10516. Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression: Toward biomarkers of treatment response. Neuropsychopharmacology, 36, 183–206. Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafò, M. R., … Yarkoni, T. (2017). Scanning the horizon: Towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18, 115–126. Porchet, R., Boekhoudt, L., Studer, B., Gandamaneni, K., Rani, N., Binnamangala, S., … Clark, L. (2013). Opioidergic and dopaminergic manipulation of gambling tendencies: a preliminary study in male recreational gamblers. Frontiers in Behavioral Neuroscience, 7:138. Price, D. D., Harkins, S. W., Rafii, A., & Price, C. (1986). A simultaneous comparison of Fentanylʼs analgesic effects on experimental and clinical pain. Pain, 24, 197–203. Price, R. C., Christou, N. V, Backman, S. B., Stone, L., & Schweinhardt, P. (2016). Opioid-receptor antagonism increases pain and decreases pleasure in obese and non-obese individuals. Psychopharmacology, 233, 3869–3879. Primac, D. W., Mirsky, A. F., & Rosvold, H. E. (1957). Effects of centrally acting drugs on two tests of brain damage. Archives of Neurology And Psychiatry, 77, 328–332. Prossin, A. R., Koch, A. E., Campbell, P. L., Barichello, T., Zalcman, S. S., & Zubieta, J. K. (2015). Acute experimental changes in mood state regulate immune function in relation to central opioid neurotransmission: a model of human CNS-peripheral inflammatory interaction. Molecular Psychiatry, 21, 243. Quednow, B. B., Csomor, P. A., Chmiel, J., Beck, T., & Vollenweider, F. X. (2008). Sensorimotor gating and attentional set-shifting are improved by the μ-opioid receptor agonist morphine in healthy human volunteers. International Journal of Neuropsychopharmacology, 11, 655–669. Rabiner, E. A., Beaver, J., Makwana, A., Searle, G., Long, C., Nathan, P. J., … Bullmore, E. T. (2011). Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans. Molecular Psychiatry, 16, 826–835. Redpath, J., & Pleuvry, B. (1982). Double-blind comparison of the respiratory and sedative effects of codeine phosphate and (+/-)-glaucine phosphate in human volunteers. British Journal of Clinical Pharmacology, 14, 555–558. Ribas-Fernandes, J. J. F., Solway, A., Diuk, C., McGuire, J. T., Barto, A. G., Niv, Y., & Botvinick, M. M. (2011). A neural signature of hierarchical reinforcement learning. Neuron, 71, 370–379. Robbins, T. W., & Arnsten, A. F. T. (2009). The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annual Review of Neuroscience, 32, 267–287. Roche, D. J. O., Worley, M. J., Courtney, K. E., Bujarski, S., London, E. D., Shoptaw, S., & Ray, L. A. (2017). Naltrexone moderates the relationship between cue-induced craving and subjective response to methamphetamine in individuals with methamphetamine use disorder. Psychopharmacology, 234, 1997–2007. Rowland, N. E., Mukherjee, M., & Robertson, K. (2001). Effects of the cannabinoid receptor antagonist SR 141716, alone and in combination with dexfenfluramine or naloxone, on food intake in rats. Psychopharmacology, 159, 111–116. Rukstalis, M., Jepson, C., Strasser, A., Lynch, K. G., Perkins, K., Patterson, F., & Lerman, C. (2005). Naltrexone reduces the relative reinforcing value of nicotine in a cigarette smoking choice paradigm. Psychopharmacology, 180, 41–48. Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110, 145–72. Saanijoki, T., Tuominen, L., Tuulari, J. J., Nummenmaa, L., Arponen, E., Kalliokoski, K., & Hirvonen, J. (2018). Opioid release after high-intensity interval training in healthy human subjects. Neuropsychopharmacology, 43, 246–254. Saarialho-Kere, U. (1988). Psychomotor, respiratory and neuroendocrinological effects of nalbuphine and haloperidol, alone and in combination, in healthy subjects. British Journal of Clinical Pharmacology, 26, 79–87. Saarialho-Kere, U., Mattila, M. J., Paloheimo, M., & Seppälä, T. (1987). Psychomotor, respiratory and neuroendocrinological effects of buprenorphine and amitriptyline in healthy volunteers. European Journal of Clinical Pharmacology, 33, 139–146. Saarialho-Kere, U., Mattila, M. J., & Seppälä, T. (1986). Pentazocine and codeine: effects on human performance and mood and interactions with diazepam. Medical Biology, 64, 293–299. Saarialho-Kere, U., Mattila, M. J., & Seppälä, T. (1988). Parenteral pentazocine: Effects on psychomotor skills and respiration, and interactions with amitriptyline. European Journal of Clinical Pharmacology, 35, 483–489. Saarialho-Kere, U., Mattila, M. J., & Seppälä, T. (1989). Psychomotor, respiratory and neuroendocrinological effects of a μ-opioid receptor agonist (oxycodone) in healthy volunteers. Pharmacology & Toxicology, 65, 252–257. Saunders, B., & Inzlicht, M. (2015). Vigour and fatigue: How variation in affect underlies effective self-control. In T. S. Braver (Ed.), Motivation and cognitive control (pp. 1–46). New York: Taylor & Francis/Routledge. Schoell, E. D., Bingel, U., Eippert, F., Yacubian, J., Christiansen, K., Andresen, H., … Buechel, C. (2010). The Effect of Opioid Receptor Blockade on the Neural Processing of Thermal Stimuli. PLoS ONE, 5, e12344. Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron, 79, 217–240. Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L. L., Cohen, J. D. D., & Botvinick, M. M. (2017). Toward a rational and mechanistic account of mental effort. Annual Review of Neuroscience, 40, 99–124. Shields, G. S., Sazma, M. A., & Yonelinas, A. P. (2016). The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neuroscience and Biobehavioral Reviews, 68, 651–668. Smith, G. M., Semke, C. W., & Beecher, H. K. (1962). Objective evidence of mental effects of heroin, morphine and placebo in normal subjects. J Pharmacol Exp Ther, 136, 53–58. Smith, K. S., & Berridge, K. C. (2007). Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. Journal of Neuroscience, 27, 1594–1605. Solinas, M., & Goldberg, S. R. (2005). Motivational effects of cannabinoids and opioids on food reinforcement depend on simultaneous activation of cannabinoid and opioid systems. Neuropsychopharmacology, 30, 2035–2045. Spruit, I. M., Wilderjans, T. F. T. M., & van Steenbergen, H. (2018). Heart work after errors: Behavioral adjustment following error commission involves cardiac effort. Cognitive Affective & Behavioral Neuroscience, 18, 375–388. Stanciu, C. N., Glass, O. M., & Penders, T. M. (2017). Use of buprenorphine in treatment of refractory depression—a review of current literature. Asian Journal of Psychiatry, 26, 94–98. Stotts, A. L., Dodrill, C. L., & Kosten, T. R. (2009). Opioid dependence treatment: options in pharmacotherapy. Expert Opin Pharmacother, 10, 1727–1740. Strand, M. C., Arnestad, M., Fjeld, B., & Mørland, J. (2017). Acute impairing effects of morphine related to driving: A systematic review of experimental studies to define blood morphine concentrations related to impairment in opioid-naïve subjects. Traffic Injury Prevention, 18, 788–794. Streufert, S., & Gengo, F. M. (1993). Drugs and behavior: An introduction. In Effects of drugs on human functioning (Vol. 9, pp. 1–12). Karger Publishers. Syal, S., Ipser, J., Terburg, D., Solms, M., Panksepp, J., Malcolm-Smith, S., … van Honk, J. (2015). Improved memory for reward cues following acute buprenorphine administration in humans. Psychoneuroendocrinology, 53, 10–15. Székely, J. I., Török, K., Karczag, I., Tolna, J., & Till, M. (1986). Effects of D-Met2, Pro5-enkephalinamide on pain tolerance and some cognitive functions in man. Psychopharmacology, 89, 409–413. Tanum, L., Solli, K. K., Benth, J. Š., Opheim, A., Sharma-Haase, K., Krajci, P., & Kunøe, N. (2017). Effectiveness of injectable extended-release naltrexone vs daily buprenorphine-naloxone for opioid dependence: a randomized clinical noninferiority trial. JAMA Psychiatry, 74, 1197–1205. Thayer, R. E. (1989). The biopsychology of mood and activation. New York: Oxford University Press. Treadway, M. T., Bossaller, N. A., Shelton, R. C., & Zald, D. H. (2012). Effort-based decision-making in major depressive disorder: a translational model of motivational anhedonia. Journal of Abnormal Psychology, 121, 553. Valentino, R. J., & Van Bockstaele, E. (2015). Endogenous opioids: The downside of opposing stress. Neurobiology of Stress, 1, 23–32. van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin and Review, 25, 2005–2015. van Steenbergen, H. (2015). Affective modulation of cognitive control: A biobehavioral perspective. In G. H. E. Gendolla, M. Tops, & S. L. Koole (Eds.), Handbook of Biobehavioral Approaches to Self- … (Vol. 31, pp. 1–39). New York: Springer. van Steenbergen, H., Band, G. P. H., & Hommel, B. (2009). Reward counteracts conflict adaptation: evidence for a role of affect in executive control. Psychological Science, 20, 1473–1477. van Steenbergen, H., Band, G. P. H., & Hommel, B. (2010). In the mood for adaptation. Psychological Science, 21, 1629 –1634. van Steenbergen, H., Band, G. P. H., & Hommel, B. (2015). Does conflict help or hurt cognitive control? Initial evidence for an inverted U-shape relationship between perceived task difficulty and conflict adaptation. Frontiers in Psychology, 6. Van Steenbergen, H., Band, G. P. H., Hommel, B., Rombouts, S. A. R. B., & Nieuwenhuis, S. (2015). Hedonic hotspots regulate cingulate-driven adaptation to cognitive demands. Cerebral Cortex, 25, 1746–1756. van Steenbergen, H., Weissman, D. H., Stein, D. J., Malcolm-Smith, S., & van Honk, J. (2017). More pain, more gain: Blocking the opioid system boosts adaptive cognitive control. Psychoneuroendocrinology, 80, 99–103. Verster, J. C., Veldhuijzen, D. S., & Volkerts, E. R. (2006). Effects of an opioid (oxycodone/paracetamol) and an NSAID (bromfenac) on driving ability, memory functioning, psychomotor performance, pupil size, and mood. Clinical Journal of Pain, 22, 499–504. Veselis, R. A., Reinsel, R. A., Feshchenko, V. A., Wronski, M., Dnistrian, A., Dutchers, S., & Wilson, R. (1994). Impaired memory and behavioral performance with fentanyl at low plasma concentrations. Anesthesia and Analgesia, 79, 952–960. Vinckier, F., Rigoux, L., Oudiette, D., & Pessiglione, M. (2018). Neuro-computational account of how mood fluctuations arise and affect decision making. Nature Communications, 9, 1708. Volavka, J., Dornbush, R., Mallya, A., & Cho, D. (1979). Naloxone fails to affect short-term memory in man. Psychiatry Research, 1, 89–92. Walker, D. J., & Zacny, J. P. (1998). Subjective, psychomotor, and analgesic effects of oral codeine and morphine in healthy volunteers. Psychopharmacology, 140, 191–201. Walker, D. J., & Zacny, J. P. (1999). Subjective, psychomotor, and physiological effects of cumulative doses of opioid mu agonists in healthy volunteers. The Journal of Pharmacology and Experimental Therapeutics, 289, 1454–1464. Walker, D. J., Zacny, J. P., Galva, K. E., & Lichtor, J. L. (2001). Subjective, psychomotor, and physiological effects of cumulative doses of mixed-action opioids in healthy volunteers. Psychopharmacology, 155, 362–371. Wanigasekera, V., Lee, M. C., Rogers, R., Kong, Y., Leknes, S., Andersson, J., & Tracey, I. (2012). Baseline reward circuitry activity and trait reward responsiveness predict expression of opioid analgesia in healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 109, 17705–10. Wardle, M. C., Bershad, A. K., & de Wit, H. (2016). Naltrexone alters the processing of social and emotional stimuli in healthy adults. Social Neuroscience, 11, 579–591. Wassum, K. M., Cely, I. C., Balleine, B. W., & Maidment, N. T. (2011). μ-opioid receptor activation in the basolateral amygdala mediates the learning of increases but not decreases in the incentive value of a food reward. Journal of Neuroscience, 31, 1591–1599. Wassum, K. M., Cely, I. C., Maidment, N. T., & Balleine, B. W. (2009a). Disruption of endogenous opioid activity during instrumental learning enhances habit acquisition. Neuroscience, 163, 770–780. Wassum, K. M., Ostlund, S. B., Maidment, N. T., & Balleine, B. W. (2009b). Distinct opioid circuits determine the palatability and the desirability of rewarding events. Proceedings of the National Academy of Sciences of the United States of America, 106, 12512–12517. Weber, S. C., Beck-Schimmer, B., Kajdi, M.-E., Müller, D., Tobler, P. N., & Quednow, B. B. (2016). Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans. Translational Psychiatry, 6, e850. Wechsler, D. (2014). Wechsler adult intelligence scale–Fourth Edition (WAIS–IV). San Antonio, Texas: Psychological Corporation. Weerts, E. M., McCaul, M. E., Kuwabara, H., Yang, X., Xu, X., Dannals, R. F., … Wand, G. S. (2013). Influence of OPRM1 Asn40Asp variant (A118G) on [ 11C] carfentanil binding potential: Preliminary findings in human subjects. International Journal of Neuropsychopharmacology, 16, 47–53. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8, 665–670. Yeomans, M. R. (1995). Opioids and human food choice. Appetite, 24, 302. Yeomans, M. R., & Gray, R. W. (2002). Opioid peptides and the control of human ingestive behaviour. Neuroscience and Biobehavioral Reviews, 26, 713–728. Yik, M. S. M., Russell, J. A., & Barrett, L. F. (1999). Structure of self-reported current affect: Integration and beyond. Journal of Personality and Social Psychology, 77, 600–619. Yovell, Y., Bar, G., Mashiah, M., Baruch, Y., Briskman, I., Asherov, J., … Panksepp, J. (2016). Ultra-low-dose buprenorphine as a time-limited treatment for severe suicidal ideation: A randomized controlled trial. American Journal of Psychiatry, 173, 491–498. Zacny, J. P. (1995). A review of the effects of opioids on psychomotor and cognitive functioning in humans. Experimental and Clinical Psychopharmacology, 3, 432–466. Zacny, J. P. (2003). Characterizing the subjective, psychomotor, and physiological effects of a hydrocodone combination product (Hycodan) in non-drug-abusing volunteers. Psychopharmacology, 165, 146–156. Zacny, J. P., Coalson, D. W., Lichtor, J. L., Yajnik, S., & Thapar, P. (1994a). Effects of naloxene on the subjective and psychomotor effects of nitrous oxide in humans. Pharmacology, Biochemistry and Behavior, 49, 573–578. Zacny, J. P., Conley, K., & Galinkin, J. (1997a). Comparing the subjective, psychomotor and physiological effects of intravenous buprenorphine and morphine in healthy volunteers. Journal of Pharmacology and Experimental Therapeutics, 282, 1187–1197. Zacny, J. P., Conley, K., & Marks, S. (1997b). Comparing the Subjective, Psychomotor and Physiological Effects of Intravenous Nalbuphine and Morphine in Healthy Volunteers. The Journal of Pharmacology and Experimental Therapeutics, 280, 1159–1169. Zacny, J. P., & de Wit, H. (2009). The prescription opioid, oxycodone, does not alter behavioral measures of impulsivity in healthy volunteers. Pharmacology Biochemistry and Behavior, 94, 108–113. Zacny, J. P., & Goldman, R. E. (2004). Characterizing the subjective, psychomotor, and physiological effects of oral propoxyphene in non-drug-abusing volunteers. Drug and Alcohol Dependence, 73, 133–140. Zacny, J. P., & Gutierrez, S. (2003). Characterizing the subjective, psychomotor, and physiological effects of oral oxycodone in non-drug-abusing volunteers. Psychopharmacology, 170, 242–254. Zacny, J. P., & Gutierrez, S. (2008). Subjective, psychomotor, and physiological effects profile of hydrocodone/acetaminophen and oxycodone/acetaminophen combination products. Pain Medicine, 9, 433–443. Zacny, J. P., & Gutierrez, S. (2009). Within-subject comparison of the psychopharmacological profiles of oral hydrocodone and oxycodone combination products in non-drug-abusing volunteers. Drug and Alcohol Dependence, 101, 107–114. Zacny, J. P., & Gutierrez, S. (2011). Subjective, psychomotor, and physiological effects of oxycodone alone and in combination with ethanol in healthy volunteers. Psychopharmacology, 218, 471–481. Zacny, J. P., Hill, J. L., Black, M. L., & Sadeghi, P. (1998). Comparing the subjective, psychomotor and physiological effects of intravenous pentazocine and morphine in normal volunteers. The Journal of Pharmacology and Experimental Therapeutics, 286, 1197–207. Zacny, J. P., Lance Lichtor, J., Binstock, W., Coalson, D. W., Cutter, T., Flemming, D. C., & Glosten, B. (1993). Subjective, behavioral and physiological responses to intravenous meperidine in healthy volunteers. Psychopharmacology, 111, 306–314. Zacny, J. P., Lichtor, J. L., Flemming, D., Coalson, D. W., & Thompson, W. K. (1994b). A dose-response analysis of the subjective, psychomotor and physiological effects of intravenous morphine in healthy volunteers. Journal of Pharmacology and Experimental Therapeutics, 268, 1–9. Zacny, J. P., Lichtor, J. L., JG, Z., & de Wit, H. (1992). Effects of fasting on responses to intravenous fentanyl in healthy volunteers. Journal of Substance Abuse, 4, 197–207. Zacny, J. P., Lichtor, J. L., Klafta, J. M., Alessi, R., & Apfelbaum, J. L. (1996a). The effects of transnasal butorphanol on mood and psychomotor functioning in healthy volunteers. Anesthesia and Analgesia, 82, 931–935. Zacny, J. P., Lichtor, J. L., Thapar, P., Coalson, D. W., Flemming, D., & Thompson, W. K. (1994c). Comparing the subjective, psychomotor and physiological effects of intravenous butorphanol and morphine in healthy volunteers. Journal of Pharmacology and Experimental Therapeutics, 270, 579–588. Zacny, J. P., & Lichtor, S. A. (2008). Within-subject comparison of the psychopharmacological profiles of oral oxycodone and oral morphine in non-drug-abusing volunteers. Psychopharmacology, 196, 105–116. Zacny, J. P., McKay, M. A., Toledano, A. Y., Marks, S., Young, C. J., Klock, P. A., & Apfelbaum, J. L. (1996b). The effects of a cold-water immersion stressor on the reinforcing and subjective effects of fentanyl in healthy volunteers. Drug and Alcohol Dependence, 42, 133–142. Zubieta, J.-K. K., Ketter, T. A., Bueller, J. A., Xu, Y. J., Kilbourn, M. R., Young, E. A., & Koeppe, R. A. (2003). Regulation of human affective responses by anterior cingulate and limbic mu-opioid neurotransmission. Archives of General Psychiatry, 60, 1145–1153.