The role of the landscape in structuring immature mosquito assemblages in wetlands

Springer Science and Business Media LLC - Tập 21 - Trang 55-70 - 2013
María Victoria Cardo1, Darío Vezzani2, Aníbal Eduardo Carbajo1
1Ecología de Enfermedades Transmitidas por Vectores (2eTV), Instituto de Investigaciones e Ingeniería Ambiental (3iA), Universidad Nacional de General San Martin, San Martin, Argentina
2Unidad de Ecología de Reservorios y Vectores de Parásitos, IEGEBA-EGE, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina

Tóm tắt

The distribution of mosquito populations is spatially heterogeneous and influenced by factors acting at a wide range of scales. The aim of this study was to assess the role of environmental heterogeneity at the landscape level in shaping the composition of immature mosquito communities inhabiting surface water habitats. The Paraná Lower Delta (Argentina) is a temperate wetland that extends along a 1º north–south gradient and presents high landscape heterogeneity, due to the combined action of geomorphology, hydrology and human intervention. Immature mosquitoes were collected every 2 weeks (Nov 2011–April 2012) from surface water habitats within 11 peridomestic areas interspersed along a 75 km north–south transect. The environment was quantified by 24 variables regarding the geomorphology, geography, economic use, climate, landcover and topography of each site and its surroundings at three radii. The association between the mosquito assemblage and the environment was tested by two multivariate approaches, the community-based outlying mean index and by-species generalized linear models. The former explained 93.6 % of the marginality of all taxa as a function of the type and diversity of landcover, precipitation, presence of cattle and altitude. The niche of six species, most of which were floodwater mosquitoes of the genera Ochlerotatus and Psorophora, deviated significantly from uniformity. The by-species approach rendered significant models for four species as a function of landcover type and precipitation. Both methodologies were broadly consistent in pointing that landscape elements affect the distribution of immature mosquitoes, thereby shaping the composition of the mosquito assemblage in peridomestic environments within wetlands.

Tài liệu tham khảo

Abramson JH (2011) WINPEPI updated: computer programs for epidemiologists, and their teaching potential. Epidemiol Perspect Innov 8:1 Alfonzo D, Grillet ME, Liria J, Navarro JC, Weaver SC, Barrera R (2005) Ecological characterization of the aquatic habitats of mosquitoes (Diptera: Culicidae) in enzootic foci of Venezuelan equine encephalitis virus in western Venezuela. J Med Entomol 42:278–284 Almirón W, Brewer M (1995) Distribución estacional de Culicidae (Diptera) en áreas periféricas de Córdoba (Argentina). Ecol Aust 5:81–86 Bailey TC, Gatrell AC (1995) Interactive spatial data analysis. Addison Wesley Longman Limited, Harlow Bentley MD, Day FJ (1989) Chemical ecology and behavioural aspects of mosquito oviposition. Annu Rev Entomol 34:401–421 Bidlingmayer WL (1985) The measurement of adult mosquito population changes-some considerations. J Am Mosq Control Assoc 1:328–348 Cailly P, Balenghien T, Ezanno P, Fontenille D, Toty C, Tran A (2011) Role of the repartition of wetland breeding sites on the spatial distribution of Anopheles and Culex, human disease vectors in southern France. Parasit Vectors 4:65 Campos RE, Sy VE (2006) Variation in the hatching response of Ochlerotatus albifasciatus egg batches (Diptera: Culicidae) in temperate Argentina. Mem Inst Oswaldo Cruz 101:47–53 Campos RE, Maciá A, García JJ (1995) Variación estacional de las poblaciones de Psorophora spp. (Diptera: Culicidae) y detección de sus parásitos y patógenos en la Provincia de Buenos Aires Argentina. Acta Entomol Chilena 19:113–121 Cardo MV, Vezzani D, Carbajo AE (2011) Community structure of ground-water breeding mosquitoes driven by land use in a temperate wetland of Argentina. Acta Trop 119:76–83 Cardo MV, Vezzani D, Carbajo AE (2012a) Immature mosquitoes from ground-water habitats in a temperate wetland of Argentina: environmental associations and seasonal variation of community attributes. J Am Mosq Control Assoc 28:151–159 Cardo MV, Vezzani D, Carbajo AE (2012b) Oviposition strategies of temporary pool mosquitoes in relation to weather, tidal regime, and land use in a temperate wetland. Bull Entomol Res 102:651–662 Chuang TW, Hockett CW, Kightlinger L, Wimberly MC (2012) Landscape-level spatial patterns of west Nile virus risk in the northern Great Plains. Am J Trop Med Hyg 86:724–731 Clements AN (1999) The biology of mosquitoes. vol. 2 Sensory, reception and behaviour. CABI, Wallinford Dale PER, Connelly R (2012) Wetlands and human health: an overview. Wetl Ecol Manag 20:165–171 Dale PER, Knight JM (2008) Wetlands and mosquitoes: a review. Wetl Ecol Manag 16:255–276 Darsie RF (1985) Mosquitoes of Argentina. Part I, keys for identification of adult females and fourth stage larvae in English and Spanish (Diptera, Culicidae). Mosq Syst 17:153–253 DeGroote J, Mercer DR, Fisher J, Sugumaran R (2007) Spatiotemporal investigation of adult mosquito (Diptera: Culicidae) populations in an eastern Iowa county, USA. J Med Entomol 44:1139–1150 Dolédec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: a new method. Ecology 81:2914–2927 Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20 Estep LK, Burkett-Cadena ND, Hill GE, Unnasch RS, Unnasch TR (2010) Estimation of dispersal distances of Culex erraticus in a focus of eastern equine encephalitis virus in the southeastern United States. J Med Entomol 47:977–986 Fontanarrosa MS, Marinone MC, Fischer S, Orellano PW, Schweigmann N (2000) Effects of flooding and temperature on Aedes albifasciatus development time and larval density in two rain pools at Buenos Aires University City. Mem Inst Oswaldo Cruz 95:787–793 Fontanarrosa MS, Collantes MB, Bachmann AO (2009) Seasonal patterns of the insect community structure in urban rain pools of temperate Argentina. J Insect Sci 9:10 Forattini O (2002) Culicidologia Medica, vol 2. Editora da Universidade de São Paulo, São Paulo Grillet M, Legendre P, Borcard D (2002) Community structure of Neotropical wetland insects in northern Venezuela. I Temporal and environmental factors. Arch Hydrobiol 155:413–436 Hansen M, DeFries R, Townshend JR, Carroll M, Dimiceli C, Sohlberg R (2003) Vegetation continuous fields MOD44B, 2001 percent tree cover, collection 3. University of Maryland, College Park Harden FW, Chubb HS (1960) Observations of dispersal in extreme south Florida and everglades national park. Mosq News 20:249–255 Harrell Jr FE (2009) Design: Design package. R package version 2.3-0 http://CRAN.R-project.org/package=Design. Accessed 2 February 2012 Haslett JR (2001) Biodiversity and conservation of Diptera in heterogeneous land mosaics: a fly’s eye view. J Insect Conserv 5:71–75 Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427 IGN (2012) Sistema de información geográfica escala 1:250.000. http://www.ign.gob.ar/sig250. Accessed 10 May 2012 INTA (1990) Atlas de Suelos de la República Argentina. Proyecto PNUD Arg-85/019, Buenos Aires. http://geointa.inta.gov.ar/suelos. Accessed 10 May 2012 Iriondo M, Scotta E (1978) The evolution of the Paraná River Delta. Proceedings of the international symposium on coastal evolution in the quaternary. INQUA, Sao Paulo, In, pp 405–418 Jaime PR, Menéndez AN (2002) Análisis del régimen hidrológico de losríos Paraná y Uruguay. Instituto Nacional del Agua, Luján. Kandus P, Karszenbaum H, Frulla L (1999) Land cover classification system of the lower delta of the Parana River (Argentina): its relationship with landsat thematic mapper spectral classes. J Coast Res 15:909–926 Kandus P, Quintana RD, Bó RF (2006) Patrones de paisaje y biodiversidad del Bajo Delta del Río Paraná. Mapa de ambientes, Pablo Casamajor, Buenos Aires LaPointe DA (2008) Dispersal of Culex quinquefasciatus (Diptera: Culicidae) in a Hawaiian Rain Forest. J Med Entomol 45:600–609 Leisnham PT, Lester PJ, Slaney DP, Weinstein P (2004) Anthropogenic environmental change increases container-breeding mosquito productivity: a case study from New Zealand lowland swamp forest. EcoHealth 1:306–316 Loetti V, Burroni N, Vezzani D (2007) Seasonal and daily activity patterns of human-biting mosquitoes in a wetland system in Argentina. J Vector Ecol 32:358–365 Maciá A, García JJ, Campos RE (1995) Bionomía de Aedes albifasciatus y Ae. crinifer (Diptera: Culicidae) y sus enemigos naturals en Punta Lara. Buenos Aires. Neotrópica 41:43–50 Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford Malvárez AI (1997) Las comunidades vegetales del Delta del río Paraná. Dissertation, Universidad de Buenos Aires, Su relación con factores ambientales y patrones de paisaje McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, London McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260 Miller JN, Brooks RP, Croonquist MJ (1997) Effects of landscape patterns on biotic communities. Landsc Ecol 12:137–153 Neiff JJ, Iriondo M, Carignan R (1994) Large tropical South American wetlands: a review. UNESCO Ecotones Workshop/UNESCO, Seattle/Paris, pp. 15 New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25 Overgaard HJ, Ekbom B, Suwonkerd W, Takagi M (2003) Effect of landscape structure on anopheline mosquito density and diversity in northern Thailand: implications for malaria transmission and control. Landsc Ecol 18:605–619 Randa LA, Yuger JA (2006) Carnivore occurrence along an urban–rural gradient: a landscape-level analysis. J Mamm 87:1154–1164 Rey JR, Walton WE, Wolfe RJ, Connelly CR, O′Connell SM, Berg J, Sakolsky-Hoopes GE, Laderman AD (2012) North American wetlands and mosquito control. Int J Environ Res Pub Health 9:4537–4605 Rochlin I, Iwanejko T, Dempsey ME, Ninivaggi DV (2009) Geostatistical evaluation of integrated marsh management impact on mosquito vectors using before-after-control-impact (BACI) design. Int J Health Geogr 8:35 Ronderos RA, Schnack JA, Maciá A (1992) Composición y variación estacional de una taxocenosis de Culicidae del ecotono subtropical pampásico (Insecta, Diptera). Graellsia 48:3–8 Rossi GC (2000) Las especies de mosquitos (Diptera: Culicidae) en la provincia de Buenos Aires, Argentina. Rev Soc Entomol Argent 59:141–145 Rossi GC, Mariluis JC, Schnack JA, Spinelli GR (2002) Dípteros vectores (Culicidae y Calliphoridae) de la Provincia de Buenos Aires. Secretaría de Política Ambiental y Universidad de La Plata, Buenos Aires Rossi GC, Stein M, Almirón WR (2008) Psorophora (Grabhamia) varinervis (Diptera: Culicidae) morphological description including pupa and fourth-stage larva previously unknown. J Med Entomol 45:342–346 Russell RC, Webb CE, Williams CR, Ritchie SA (2005) Mark–release–recapture study to measure dispersal of the mosquito Aedes aegypti in Cairns, Queensland, Australia. Med Vet Entomol 19:451–457 R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 1 February 2012 Schäfer M, Storch V, Kaiser A, Beck M, Becker N (1997) Dispersal behavior of adult mosquitoes in the Upper Rhine Valley, Germany. J Vector Ecol 22:1–5 Schäfer M, Lundkvist E, Landin J, Persson TZ, Lundström JO (2006) Influence of landscape structure on mosquitoes (Diptera: Culicidae) and dytiscids (Coleoptera: Dytiscidae) at five spatial scales in Swedish wetlands. Wetlands 26:57–68 Senise LV, Sallum MA (2008) Redescription of Culex (Culex) dolosus (Lynch Arribálzaga) (Diptera:Culicidae), based on specimens from Pico do Itapeva, Serra da Mantiqueira, São Paulo, Brazil. Zootaxa 1683:51–62 Silver JB (2008) Mosquito ecology: field sampling methods. Springer, New York Snow WE, Pickard E, Hawkins JL (1960) Observations on the biology of Psorophora cyanescens. J Econ Entomol 53:619–621 Steiger DM, Johnson P, Hilbert DW, Ritchie S, Jones D, Laurance SGW (2012) Effects of landscape disturbance on mosquito community composition in tropical Australia. J Vector Ecol 37:69–76 Stein M, Laurito M, Rossi GC, Almirón WR (2009) Morphological description of the pupa and fourth-instar larva and redescription of the adults of Psorophora (Psorophora) pallescens Edwards (Diptera: Culicidae). Zootaxa 2306:51–58 Trawinski PR, Mackay DS (2010) Identification of environmental covariates of west Nile virus vector mosquito population abundance. Vector Borne Zoonotic Dis 10:515–526 USGS United States Geological Survey (2005) Center for earth resources observation and science. www.eros.usgs.gov. Accessed 2 May 2012 Vanwambeke SO, Somboon P, Harbach RE, Isenstadt M, Lambin EF, Walton C, Butlin RK (2007) Landscape and land cover factors influence the presence of Aedes and Anopheles larvae. J Med Entomol 44:133–144 Wallis RC, Whitman L (1970) New collection records of Psorophora ciliate (Fabricius), Psorophora ferox (Humboldt) and Anopheles earlei Vargas in Connecticut (Diptera: Culicidae). J Med Entomol 8:336–337 Wekesa JW, Yubal B, Washino RK (1996) Spatial distribution of adult mosquitoes (Diptera: Culicidae) in habitats associated with the rice agroecosystem of northern California. J Med Entomol 33:344–350 Whittaker RH, Levin SA, Root RB (1973) Niche, habitat and ecotope. Am Nat 107:321–338 Williams DD (2005) Temporary forest pools: can we see the water for the trees? Wetl Ecol Manag 13:213–233 Zeilhofer P, Soares dos Santos E, Ribeiro ALM, Miyazaki RD, Atanaka dos Santos M (2007) Habitat suitability mapping of Anopheles darlingi in the surroundings of the Manso hydropower plant reservoir, Mato Grosso Central Brazil. Int J Health Geogr 6:7 Zoffoli ML, Kandus P, Madanes N, Calvo DH (2008) Seasonal and interanual analysis of wetlands in South America using NOAA-AVHRR NDVI time series: the case of the Paraná Delta Region. Landsc Ecol 23:833–848 Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New York Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14