Vai trò của cơn gyrus góc trong nhận thức ngữ nghĩa: tổng hợp năm nghiên cứu hình ảnh thần kinh chức năng

Brain Structure and Function - Tập 228 - Trang 273-291 - 2022
Philipp Kuhnke1, Curtiss A. Chapman1, Vincent K. M. Cheung2, Sabrina Turker1, Astrid Graessner1, Sandra Martin1, Kathleen A. Williams1, Gesa Hartwigsen1
1Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2Institute of Information Science, Academia Sinica, Taipei, Taiwan

Tóm tắt

Kiến thức ngữ nghĩa là trung tâm của nhận thức con người. Gyrus góc (AG) thường được coi là một khu vực não quan trọng cho nhận thức ngữ nghĩa. Tuy nhiên, vai trò của AG trong xử lý ngữ nghĩa vẫn còn gây tranh cãi. Những tranh cãi chính liên quan đến độ cực của phản ứng (kích hoạt so với giảm hoạt động) và mối quan hệ của nó với độ khó của nhiệm vụ, sự phân bố hai bên (AG trái so với AG phải), và phân vùng chức năng - giải phẫu (PGa so với PGp). Ở đây, chúng tôi đã tổng hợp dữ liệu fMRI từ năm nghiên cứu về xử lý ngữ nghĩa (n = 172) và phân tích các hồ sơ phản ứng từ cùng một vùng giải phẫu mà chúng tôi đã lưu ý cho PGa trái và PGp cũng như PGa phải và PGp phải. Chúng tôi nhận thấy rằng AG thường xuyên bị giảm hoạt động trong các điều kiện không ngữ nghĩa, trong khi độ cực phản ứng trong các điều kiện ngữ nghĩa thì không nhất quán. Tuy nhiên, AG thường xuyên thể hiện sự khác biệt phản ứng tương đối giữa các điều kiện ngữ nghĩa và không ngữ nghĩa, cũng như giữa các điều kiện ngữ nghĩa khác nhau. Phân tích kết hợp trên tất cả các nghiên cứu cho thấy rằng phản ứng AG có thể được giải thích tốt nhất bởi các hiệu ứng tách biệt của độ khó nhiệm vụ và nhu cầu xử lý ngữ nghĩa. Các hiệu ứng độ khó nhiệm vụ mạnh hơn ở PGa so với PGp, không kể bán cầu. Các hiệu ứng ngữ nghĩa mạnh hơn ở AG trái so với AG phải, bất kể tiểu vùng. Những kết quả này cho thấy rằng AG tham gia vào cả những quá trình liên quan đến độ khó nhiệm vụ tổng quát và các quá trình ngữ nghĩa chuyên biệt. Trong xử lý ngữ nghĩa, chúng tôi đề xuất rằng AG trái đóng vai trò như một "khu vực hội tụ đa phương thức" kết hợp các đặc điểm ngữ nghĩa khác nhau có liên quan đến cùng một khái niệm, cho phép truy cập hiệu quả vào các đặc điểm có liên quan đến nhiệm vụ.

Từ khóa

#Gyrus góc #nhận thức ngữ nghĩa #fMRI #xử lý ngữ nghĩa #nghiên cứu thần kinh học

Tài liệu tham khảo

Andrews-Hanna JR (2012) The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18:251–270. https://doi.org/10.1177/1073858411403316 Assem M, Glasser MF, Van Essen DC, Duncan J (2020) A domain-general cognitive core defined in multimodally parcellated human cortex. Cereb Cortex 30:4361–4380. https://doi.org/10.1093/cercor/bhaa023 Bar M, Aminoff E (2003) Cortical analysis of visual context. Neuron 38:347–358. https://doi.org/10.1016/S0896-6273(03)00167-3 Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20:353–364. https://doi.org/10.1038/nn.4502 Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01 Bergmann TO, Karabanov A, Hartwigsen G et al (2016) Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage 140:4–19. https://doi.org/10.1016/j.neuroimage.2016.02.012 Binder JR (2016) In defense of abstract conceptual representations. Psychon Bull Rev 23:1096–1108. https://doi.org/10.3758/s13423-015-0909-1 Binder JR, Desai RH (2011) The neurobiology of semantic memory. Trends Cogn Sci 15:527–536. https://doi.org/10.1016/j.tics.2011.10.001 Binder JR, Fernandino L (2015) Semantic processing. In: Toga AW (ed) Brain mapping. Elsevier, Amsterdam, pp 445–454 Binder JR, Frost JA, Hammeke TA et al (1999) Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci 11:80–93. https://doi.org/10.1162/089892999563265 Binder JR, Westbury CF, McKiernan KA et al (2005) Distinct brain systems for processing concrete and abstract concepts. J Cogn Neurosci 17:905–917. https://doi.org/10.1162/0898929054021102 Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19:2767–2796. https://doi.org/10.1093/cercor/bhp055 Bolker B (2020) Maximum likelihood estimation and analysis with the bbmle package. Citeseer Bonner MF, Price AR (2013) Where is the anterior temporal lobe and what does it do? J Neurosci 33:4213–4215. https://doi.org/10.1523/JNEUROSCI.0041-13.2013 Bonner MF, Peelle JE, Cook PA, Grossman M (2013) Heteromodal conceptual processing in the angular gyrus. Neuroimage 71:175–186. https://doi.org/10.1016/j.neuroimage.2013.01.006 Brett M, Anton J-L, Valabregue R, Poline J-B (2002) Region of interest analysis using an SPM toolbox [abstract]. Sendai, Japan Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. https://doi.org/10.1196/annals.1440.011 Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. https://doi.org/10.1177/0049124104268644 Caspers S, Geyer S, Schleicher A et al (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33:430–448. https://doi.org/10.1016/j.neuroimage.2006.06.054 Caspers S, Eickhoff SB, Geyer S et al (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212:481–495. https://doi.org/10.1007/s00429-008-0195-z Chai LR, Mattar MG, Blank IA et al (2016) Functional network dynamics of the language system. Cereb Cortex 26:4148–4159. https://doi.org/10.1093/cercor/bhw238 Chapman CA, Hasan O, Schulz PE, Martin RC (2020) Evaluating the distinction between semantic knowledge and semantic access: evidence from semantic dementia and comprehension-impaired stroke aphasia. Psychon Bull Rev 27:607–639. https://doi.org/10.3758/s13423-019-01706-6 Chapman CA, Hartwigsen G (2021) Semantic conflict is resolved by semantic and multiple demand networks. In: Poster presented at the 13th Meeting of the Society for the Neurobiology of Language, October 5–8, 2021 (virtual edition) Damasio AR (1989) The brain binds entities and events by multiregional activation from convergence zones. Neural Comput 1:123–132. https://doi.org/10.1162/neco.1989.1.1.123 Davey J, Cornelissen PL, Thompson HE et al (2015) Automatic and controlled semantic retrieval: TMS reveals distinct contributions of posterior middle temporal gyrus and angular gyrus. J Neurosci 35:15230–15239. https://doi.org/10.1523/JNEUROSCI.4705-14.2015 Desai RH, Reilly M, van Dam W (2018) The multifaceted abstract brain. Philos Trans R Soc B Biol Sci 373:20170122. https://doi.org/10.1098/rstb.2017.0122 Duffau H, Capelle L, Sichez JP et al (1999) Intra-operative direct electrical stimulations of the central nervous system: the salpêtrière experience with 60 patients. Acta Neurochir (wien) 141:1157–1167. https://doi.org/10.1007/s007010050413 Duffau H, Velut S, Mitchell M-C et al (2004) Intra-operative mapping of the subcortical visual pathways using direct electrical stimulations. Acta Neurochir (wien) 146:265–270. https://doi.org/10.1007/s00701-003-0199-7 Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 14:172–179. https://doi.org/10.1016/j.tics.2010.01.004 Eickhoff SB, Stephan KE, Mohlberg H et al (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335. https://doi.org/10.1016/j.neuroimage.2004.12.034 Eickhoff SB, Heim S, Zilles K, Amunts K (2006) Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32:570–582. https://doi.org/10.1016/j.neuroimage.2006.04.204 Eickhoff SB, Laird AR, Grefkes C et al (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30:2907–2926. https://doi.org/10.1002/hbm.20718 Fedorenko E, Kanwisher N (2009) Neuroimaging of language: why hasn’t a clearer picture emerged? Lang Linguist Compass 3:839–865. https://doi.org/10.1111/j.1749-818X.2009.00143.x Fernandino L, Binder JR, Desai RH et al (2016) Concept representation reflects multimodal abstraction: a framework for embodied semantics. Cereb Cortex 26:2018–2034. https://doi.org/10.1093/cercor/bhv020 Ferstl EC, Neumann J, Bogler C, von Cramon DY (2008) The extended language network: a meta-analysis of neuroimaging studies on text comprehension. Hum Brain Mapp 29:581–593. https://doi.org/10.1002/hbm.20422 Finn ES (2021) Is it time to put rest to rest? Trends Cogn Sci 25:1021–1032. https://doi.org/10.1016/j.tics.2021.09.005 Graessner A, Zaccarella E, Hartwigsen G (2021) Differential contributions of left-hemispheric language regions to basic semantic composition. Brain Struct Funct 226:501–518. https://doi.org/10.1007/s00429-020-02196-2 Graves WW, Binder JR, Desai RH et al (2010) Neural correlates of implicit and explicit combinatorial semantic processing. Neuroimage 53:638–646. https://doi.org/10.1016/j.neuroimage.2010.06.055 Hagmann P, Cammoun L, Gigandet X et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159. https://doi.org/10.1371/journal.pbio.0060159 Hahn B, Ross TJ, Yang Y et al (2007) Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network. J Neurosci 27:3477–3489. https://doi.org/10.1523/JNEUROSCI.5129-06.2007 Hartwigsen G, Volz LJ (2021) Probing rapid network reorganization of motor and language functions via neuromodulation and neuroimaging. Neuroimage 224:117449. https://doi.org/10.1016/j.neuroimage.2020.117449 Hartwigsen G, Weigel A, Schuschan P et al (2016) Dissociating parieto-frontal networks for phonological and semantic word decisions: a condition-and-perturb TMS study. Cereb Cortex 26:2590–2601. https://doi.org/10.1093/cercor/bhv092 Hauk O, Tschentscher N (2013) The body of evidence: what can neuroscience tell us about embodied semantics? Front Psychol 4:1–14. https://doi.org/10.3389/fpsyg.2013.00050 Hodgson VJ, Lambon Ralph MA, Jackson RL (2021) Multiple dimensions underlying the functional organization of the language network. Neuroimage 241:118444. https://doi.org/10.1016/j.neuroimage.2021.118444 Hoenig K, Sim E-J, Bochev V et al (2008) Conceptual flexibility in the human brain: dynamic recruitment of semantic maps from visual, motor, and motion-related areas. J Cogn Neurosci 20:1799–1814. https://doi.org/10.1162/jocn.2008.20123 Humphreys GF, Lambon Ralph MA (2017) Mapping domain-selective and counterpointed domain-general higher cognitive functions in the lateral parietal cortex: evidence from fMRI comparisons of difficulty-varying semantic versus visuo-spatial tasks, and functional connectivity analyses. Cereb Cortex 27:4199–4212. https://doi.org/10.1093/cercor/bhx107 Humphreys GF, Hoffman P, Visser M et al (2015) Establishing task- and modality-dependent dissociations between the semantic and default mode networks. Proc Natl Acad Sci 112:7857–7862. https://doi.org/10.1073/pnas.1422760112 Humphreys GF, Lambon Ralph MA, Simons JS (2021) A unifying account of angular gyrus contributions to episodic and semantic cognition. Trends Neurosci 44:452–463. https://doi.org/10.1016/j.tins.2021.01.006 Ishibashi R, Lambon Ralph MA, Saito S, Pobric G (2011) Different roles of lateral anterior temporal lobe and inferior parietal lobule in coding function and manipulation tool knowledge: evidence from an rTMS study. Neuropsychologia 49:1128–1135. https://doi.org/10.1016/j.neuropsychologia.2011.01.004 Jackson RL (2021) The neural correlates of semantic control revisited. Neuroimage. https://doi.org/10.1016/j.neuroimage.2020.117444 Jefferies E (2013) The neural basis of semantic cognition: converging evidence from neuropsychology, neuroimaging and TMS. Cortex 49:611–625. https://doi.org/10.1016/j.cortex.2012.10.008 Jung-Beeman M (2005) Bilateral brain processes for comprehending natural language. Trends Cogn Sci 9:512–518. https://doi.org/10.1016/j.tics.2005.09.009 Kemmerer D (2015) Are the motor features of verb meanings represented in the precentral motor cortices? Yes, but within the context of a flexible, multilevel architecture for conceptual knowledge. Psychon Bull Rev 22:1068–1075. https://doi.org/10.3758/s13423-014-0784-1 Kiefer M, Pulvermüller F (2012) Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. Cortex 48:805–825. https://doi.org/10.1016/j.cortex.2011.04.006 Kuhnke P, Beaupain MC, Cheung VKM et al (2020a) Left posterior inferior parietal cortex causally supports the retrieval of action knowledge. Neuroimage 219:117041. https://doi.org/10.1016/j.neuroimage.2020.117041 Kuhnke P, Kiefer M, Hartwigsen G (2020b) Task-dependent recruitment of modality-specific and multimodal regions during conceptual processing. Cereb Cortex 30:3938–3959. https://doi.org/10.1093/cercor/bhaa010 Kuhnke P, Kiefer M, Hartwigsen G (2021) Task-dependent functional and effective connectivity during conceptual processing. Cereb Cortex 31:3475–3493. https://doi.org/10.1093/cercor/bhab026 Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw. https://doi.org/10.18637/jss.v082.i13 Lambon Ralph MA (2014) Neurocognitive insights on conceptual knowledge and its breakdown. Philos Trans R Soc B Biol Sci 369:20120392. https://doi.org/10.1098/rstb.2012.0392 Lambon Ralph MA, Jefferies E, Patterson K, Rogers TT (2016) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18:42–55. https://doi.org/10.1038/nrn.2016.150 Lüdecke D (2018) ggeffects: tidy data frames of marginal effects from regression models. J Open Source Softw 3:772. https://doi.org/10.21105/joss.00772 Lüdecke D (2021) sjPlot: data visualization for statistics in social science. Zenodo. https://doi.org/10.5281/zenodo.2400856 Margulies DS, Ghosh SS, Goulas A et al (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci 113:12574–12579. https://doi.org/10.1073/pnas.1608282113 Martin RC, Shelton JR, Yaffee LS (1994) Language processing and working memory: neuropsychological evidence for separate phonological and semantic capacities. J Mem Lang 33:83–111. https://doi.org/10.1006/jmla.1994.1005 Martin S, Saur D, Hartwigsen G (2021) Age-dependent contribution of domain-general networks to semantic cognition. Cereb Cortex. https://doi.org/10.1093/cercor/bhab252 Mattheiss SR, Levinson H, Graves WW (2018) Duality of function: activation for meaningless nonwords and semantic codes in the same brain areas. Cereb Cortex 28:2516–2524. https://doi.org/10.1093/cercor/bhy053 Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052. https://doi.org/10.1093/brain/121.6.1013 Morcom AM, Fletcher PC (2007) Does the brain have a baseline? Why we should be resisting a rest. Neuroimage 37:1073–1082. https://doi.org/10.1016/j.neuroimage.2006.09.013 Nelson SM, Cohen AL, Power JD et al (2010) A parcellation scheme for human left lateral parietal cortex. Neuron 67:156–170. https://doi.org/10.1016/j.neuron.2010.05.025 Noonan KA, Jefferies E, Visser M, Lambon Ralph MA (2013) Going beyond inferior prefrontal involvement in semantic control: evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex. J Cogn Neurosci 25:1824–1850. https://doi.org/10.1162/jocn_a_00442 Obleser J, Wise RJS, Dresner MA, Scott SK (2007) Functional integration across brain regions improves speech perception under adverse listening conditions. J Neurosci 27:2283–2289. https://doi.org/10.1523/JNEUROSCI.4663-06.2007 Patterson K, Lambon Ralph MA (2016) The hub-and-spoke hypothesis of semantic memory. In: Hickok G, Small SL (eds) Neurobiology of language. Elsevier, Amsterdam, pp 765–775 Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci 8:976–987. https://doi.org/10.1038/nrn2277 Pobric G, Jefferies E, Lambon Ralph MA (2010a) Category-specific versus category-general semantic impairment induced by transcranial magnetic stimulation. Curr Biol 20:964–968. https://doi.org/10.1016/j.cub.2010.03.070 Pobric G, Jefferies E, Lambon Ralph MA (2010b) Amodal semantic representations depend on both anterior temporal lobes: evidence from repetitive transcranial magnetic stimulation. Neuropsychologia 48:1336–1342. https://doi.org/10.1016/j.neuropsychologia.2009.12.036 Price GR, Ansari D (2011) Symbol processing in the left angular gyrus: evidence from passive perception of digits. Neuroimage 57:1205–1211. https://doi.org/10.1016/j.neuroimage.2011.05.035 Price AR, Bonner MF, Grossman M (2015a) Semantic memory: cognitive and neuroanatomical perspectives. In: Toga AW (ed) Brain mapping. Elsevier, Amsterdam, pp 529–536 Price AR, Bonner MF, Peelle JE, Grossman M (2015b) Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus. J Neurosci 35:3276–3284. https://doi.org/10.1523/JNEUROSCI.3446-14.2015 Price AR, Peelle JE, Bonner MF et al (2016) Causal evidence for a mechanism of semantic integration in the angular gyrus as revealed by high-definition transcranial direct current stimulation. J Neurosci 36:3829–3838. https://doi.org/10.1523/JNEUROSCI.3120-15.2016 Rabe M, Vasishth S, Hohenstein S et al (2020) hypr: An R package for hypothesis-driven contrast coding. J Open Source Softw 5:2134. https://doi.org/10.21105/joss.02134 Raichle ME (2015) The brain’s default mode network. Annu Rev Neurosci 38:433–447. https://doi.org/10.1146/annurev-neuro-071013-014030 Reilly J, Peelle JE, Garcia A, Crutch SJ (2016) Linking somatic and symbolic representation in semantic memory: the dynamic multilevel reactivation framework. Psychon Bull Rev 23:1002–1014. https://doi.org/10.3758/s13423-015-0824-5 Rice GE, Lambon Ralph MA, Hoffman P (2015) The roles of left versus right anterior temporal lobes in conceptual knowledge: an ALE meta-analysis of 97 functional neuroimaging studies. Cereb Cortex 25:4374–4391. https://doi.org/10.1093/cercor/bhv024 Schad DJ, Vasishth S, Hohenstein S, Kliegl R (2020) How to capitalize on a priori contrasts in linear (mixed) models: a tutorial. J Mem Lang 110:104038. https://doi.org/10.1016/j.jml.2019.104038 Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19:43–61. https://doi.org/10.1177/1073858412440596 Seghier ML, Fagan E, Price CJ (2010) Functional subdivisions in the left angular gyrus where the semantic system meets and diverges from the default network. J Neurosci 30:16809–16817. https://doi.org/10.1523/JNEUROSCI.3377-10.2010 Sharp DJ, Awad M, Warren JE et al (2009) The neural response to changing semantic and perceptual complexity during language processing. Hum Brain Mapp 31:365–377. https://doi.org/10.1002/hbm.20871 Sliwinska MW, James A, Devlin JT (2015) Inferior parietal lobule contributions to visual word recognition. J Cogn Neurosci 27:593–604. https://doi.org/10.1162/jocn_a_00721 Stark CEL, Squire LR (2001) When zero is not zero: the problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci U S A 98:12760–12765. https://doi.org/10.1073/pnas.221462998 Tomasi D, Volkow ND (2011) Association between functional connectivity hubs and brain networks. Cereb Cortex 21:2003–2013. https://doi.org/10.1093/cercor/bhq268 Turker S, Kuhnke P, Hartwigsen G (2021) The role of the left temporo-parietal cortex for pseudoword processing: evidence from combined neuroimaging and brain stimulation. In: Abstract accepted for the 19th Old World Conference on Phonology—Workshop: Phonology & Dyslexia van Elk M, van Schie H, Bekkering H (2014) Action semantics: a unifying conceptual framework for the selective use of multimodal and modality-specific object knowledge. Phys Life Rev 11:220–250. https://doi.org/10.1016/j.plrev.2013.11.005 Vigneau M, Beaucousin V, Hervé PY et al (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30:1414–1432. https://doi.org/10.1016/j.neuroimage.2005.11.002 Visser M, Jefferies E, Lambon Ralph MA (2010) Semantic processing in the anterior temporal lobes: a meta-analysis of the functional neuroimaging literature. J Cogn Neurosci 22:1083–1094. https://doi.org/10.1162/jocn.2009.21309 Whitney C, Kirk M, O’Sullivan J et al (2012) Executive semantic processing is underpinned by a large-scale neural network: revealing the contribution of left prefrontal, posterior temporal, and parietal cortex to controlled retrieval and selection using TMS. J Cogn Neurosci 24:133–147. https://doi.org/10.1162/jocn_a_00123 Woodard JL, Seidenberg M, Nielson KA et al (2007) Temporally graded activation of neocortical regions in response to memories of different ages. J Cogn Neurosci 19:1113–1124. https://doi.org/10.1162/jocn.2007.19.7.1113