The role of micro-inertia on the shock structure in porous metals

Journal of the Mechanics and Physics of Solids - Tập 154 - Trang 104508 - 2021
Z. Lovinger1, C. Czarnota2, S. Ravindran1, A. Molinari2, G. Ravichandran1
1Graduate Aerospace Laboratories, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
2Université de Lorraine, CNRS, Arts et Métiers ParisTech, LEM3, F-57000 Metz, France

Tài liệu tham khảo

Benson, 1997, Quasistatic and dynamic regimes of granular material deformation under impulse loading, J. Mech. Phys. solids, 45, 1955, 10.1016/S0022-5096(97)00021-5 Carroll, 1972, Static and dynamic pore collapse relations for ductile porous materials, J. Appl. Phys., 43, 1626, 10.1063/1.1661372 Carroll, 1986, The effect of temperature on viscoplastic pore collapse, J. Appl. Phys., 59, 1962, 10.1063/1.336426 Clifton, 1971, On the analysis of elastic/visco-plastic waves of finite uniaxial strain, Shock Waves and the Mechanical Properties of Solids, 73 Cohen, 2015, Steady shock waves in porous plastic solids, Int. J. Solids Struct., 71, 70, 10.1016/j.ijsolstr.2015.06.002 Czarnota, 2008, Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum, J. Mech. Phys. Solids, 56, 1624, 10.1016/j.jmps.2007.07.017 Czarnota, 2017, The structure of steady shock waves in porous metals, J. Mech. Phys. Solids, 107, 204, 10.1016/j.jmps.2017.06.005 Czarnota, 2020, Steady shock waves in porous metals: Viscosity and micro-inertia effects, Int. J. Plast., 135, 10.1016/j.ijplas.2020.102816 Dolan, 2010, Accuracy and precision in photonic Doppler velocimetry, Rev. Sci. Instrum., 81, 10.1063/1.3429257 Fãciu, 2006, On the longitudinal impact of two phase transforming bars. Elastic versus a rate-type approach. Part I: the elastic case, Int. J. Solids Struct., 43, 497, 10.1016/j.ijsolstr.2005.06.023 Goel, 2015, Interaction of a shock wave with a closed cell aluminum metal foam, Combust Explos Shock Waves, 51, 373, 10.1134/S0010508215030144 Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth: Part I - yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2, 10.1115/1.3443401 Hermann, 1969, Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials, J. Appl. Phys., 40, 2490, 10.1063/1.1658021 Jacques, 2010, A micromechanical constitutive model for dynamic damage and fracture of ductile materials, Int. J. Fract., 162, 159, 10.1007/s10704-009-9436-2 Johnson, 1969, Dislocation Dynamics and Steady Plastic Wave Profiles in 6061-T6 Aluminum, J. Appl. Phys., 40, 4321, 10.1063/1.1657194 Johnson, 1981, Dynamic fracture and spallation in ductile solids, J. Appl. Phys., 52, 2812, 10.1063/1.329011 Knowles, 2002, Impact-induced tensile waves in a rubberlike material, J. Appl. Math., 62, 1153 Li, 2012, Low strain rate compressive behavior of high porosity closed-cell aluminum foams, Sci. China Technol. Sci., 55, 451, 10.1007/s11431-011-4685-5 McQueen, 1970, High-Velocity Impact Phenomena, 244 Medvedev, 2012, Shock compression of porous metals and silicates, Physics-Uspekhi, 55, 773, 10.3367/UFNe.0182.201208b.0829 Molinari, 2001, Micromechanical modelling of porous materials under dynamic loading, J. Mech. Phys. Solids, 49, 1497, 10.1016/S0022-5096(01)00003-5 Molinari, 2004, Fundamental structure of steady plastic shock waves in metals, J. Appl. Phys., 95, 1718, 10.1063/1.1640452 Needleman, 1991, An analysis of dynamic, ductile crack growth in a double edge cracked specimen, Int. J. Fract., 49, 41, 10.1007/BF00013502 Nesterenko, 2001 Nesterenko, 1990, Regimes of shock-wave compaction of granular materials, High pressure research, 5, 835, 10.1080/08957959008246273 Ortiz, 1992, Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material, J. Appl. Mech., 114, 48, 10.1115/1.2899463 Sartori, 2015, Constitutive behavior of porous ductile materials accounting for micro-inertia and void shape, Mech. Mater., 80, 324, 10.1016/j.mechmat.2013.12.006 Smith, 1994 Subramani, 2020, Dynamic response of ductile materials containing cylindrical voids, Int. J. Fract., 222, 197, 10.1007/s10704-020-00441-7 Swegle, 1985, Shock viscosity and the prediction of shock wave rise times, J. Appl. Phys., 58, 692, 10.1063/1.336184 Tvergaard, 1981, Influence of voids on shear bands instabilities under plane strain conditions, Int. J. Fract., 17, 389, 10.1007/BF00036191