The role of micro-inertia on the shock structure in porous metals
Tài liệu tham khảo
Benson, 1997, Quasistatic and dynamic regimes of granular material deformation under impulse loading, J. Mech. Phys. solids, 45, 1955, 10.1016/S0022-5096(97)00021-5
Carroll, 1972, Static and dynamic pore collapse relations for ductile porous materials, J. Appl. Phys., 43, 1626, 10.1063/1.1661372
Carroll, 1986, The effect of temperature on viscoplastic pore collapse, J. Appl. Phys., 59, 1962, 10.1063/1.336426
Clifton, 1971, On the analysis of elastic/visco-plastic waves of finite uniaxial strain, Shock Waves and the Mechanical Properties of Solids, 73
Cohen, 2015, Steady shock waves in porous plastic solids, Int. J. Solids Struct., 71, 70, 10.1016/j.ijsolstr.2015.06.002
Czarnota, 2008, Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum, J. Mech. Phys. Solids, 56, 1624, 10.1016/j.jmps.2007.07.017
Czarnota, 2017, The structure of steady shock waves in porous metals, J. Mech. Phys. Solids, 107, 204, 10.1016/j.jmps.2017.06.005
Czarnota, 2020, Steady shock waves in porous metals: Viscosity and micro-inertia effects, Int. J. Plast., 135, 10.1016/j.ijplas.2020.102816
Dolan, 2010, Accuracy and precision in photonic Doppler velocimetry, Rev. Sci. Instrum., 81, 10.1063/1.3429257
Fãciu, 2006, On the longitudinal impact of two phase transforming bars. Elastic versus a rate-type approach. Part I: the elastic case, Int. J. Solids Struct., 43, 497, 10.1016/j.ijsolstr.2005.06.023
Goel, 2015, Interaction of a shock wave with a closed cell aluminum metal foam, Combust Explos Shock Waves, 51, 373, 10.1134/S0010508215030144
Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth: Part I - yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2, 10.1115/1.3443401
Hermann, 1969, Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials, J. Appl. Phys., 40, 2490, 10.1063/1.1658021
Jacques, 2010, A micromechanical constitutive model for dynamic damage and fracture of ductile materials, Int. J. Fract., 162, 159, 10.1007/s10704-009-9436-2
Johnson, 1969, Dislocation Dynamics and Steady Plastic Wave Profiles in 6061-T6 Aluminum, J. Appl. Phys., 40, 4321, 10.1063/1.1657194
Johnson, 1981, Dynamic fracture and spallation in ductile solids, J. Appl. Phys., 52, 2812, 10.1063/1.329011
Knowles, 2002, Impact-induced tensile waves in a rubberlike material, J. Appl. Math., 62, 1153
Li, 2012, Low strain rate compressive behavior of high porosity closed-cell aluminum foams, Sci. China Technol. Sci., 55, 451, 10.1007/s11431-011-4685-5
McQueen, 1970, High-Velocity Impact Phenomena, 244
Medvedev, 2012, Shock compression of porous metals and silicates, Physics-Uspekhi, 55, 773, 10.3367/UFNe.0182.201208b.0829
Molinari, 2001, Micromechanical modelling of porous materials under dynamic loading, J. Mech. Phys. Solids, 49, 1497, 10.1016/S0022-5096(01)00003-5
Molinari, 2004, Fundamental structure of steady plastic shock waves in metals, J. Appl. Phys., 95, 1718, 10.1063/1.1640452
Needleman, 1991, An analysis of dynamic, ductile crack growth in a double edge cracked specimen, Int. J. Fract., 49, 41, 10.1007/BF00013502
Nesterenko, 2001
Nesterenko, 1990, Regimes of shock-wave compaction of granular materials, High pressure research, 5, 835, 10.1080/08957959008246273
Ortiz, 1992, Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material, J. Appl. Mech., 114, 48, 10.1115/1.2899463
Sartori, 2015, Constitutive behavior of porous ductile materials accounting for micro-inertia and void shape, Mech. Mater., 80, 324, 10.1016/j.mechmat.2013.12.006
Smith, 1994
Subramani, 2020, Dynamic response of ductile materials containing cylindrical voids, Int. J. Fract., 222, 197, 10.1007/s10704-020-00441-7
Swegle, 1985, Shock viscosity and the prediction of shock wave rise times, J. Appl. Phys., 58, 692, 10.1063/1.336184
Tvergaard, 1981, Influence of voids on shear bands instabilities under plane strain conditions, Int. J. Fract., 17, 389, 10.1007/BF00036191