The role of macrophages in the tumor microenvironment and tumor metabolism

Springer Science and Business Media LLC - Tập 45 Số 2 - Trang 187-201 - 2023
Pritam Sadhukhan1, Tanguy Y. Seiwert1,2
1Johns Hopkins University, Baltimore, USA
2Sidney Kimmel Comprehensive Cancer Center, Baltimore, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L (2019) Macrophages and metabolism in the tumor microenvironment. Cell Metab 30(1):36–50

Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA (2022) The complex role of tumor-infiltrating macrophages. Nat Immunol 23(8):1148–1156

Xiang X, Wang J, Lu D, Xu X (2021) Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 6(1):75

Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY, Mou XZ (2020) The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol 353:104119

Dehne N, Mora J, Namgaladze D, Weigert A, Brüne B (2017) Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol 35:12–19

Wu K, Lin K, Li X, Yuan X, Xu P, Ni P et al (2020) Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol 11:1731

Hinshaw DC, Shevde LA (2019) The tumor microenvironment innately modulates cancer progression. Cancer Res 79(18):4557–4566

Li S, Yu J, Huber A, Kryczek I, Wang Z, Jiang L et al (2022) Metabolism drives macrophage heterogeneity in the tumor microenvironment. Cell Rep 39(1):110609

Pan Y, Yu Y, Wang X, Zhang T (2020) Tumor-associated macrophages in tumor immunity. Front Immunol 11:583084

Nakamura K, Smyth MJ (2020) Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol 17(1):1–12

Tamura R, Tanaka T, Yamamoto Y, Akasaki Y, Sasaki H (2018) Dual role of macrophage in tumor immunity. Immunotherapy 10(10):899–909

Lechner M, Lirk P, Rieder J (2005) Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol 15(4):277–289

Wu T, Yang W, Sun A, Wei Z, Lin Q (2023) The Role of CXC Chemokines in Cancer Progression. Cancers 15(1):167

Kashfi K, Kannikal J, Nath N (2021) Macrophage reprogramming and cancer therapeutics: Role of iNOS-derived NO. Cells 10(11):3194

Zhou X, Liu Q, Wang X, Yao X, Zhang B, Wu J et al (2023) Exosomal ncRNAs facilitate interactive ‘dialogue’ between tumor cells and tumor-associated macrophages. Cancer Lett 552:215975

Boutilier AJ, Elsawa SF (2021) Macrophage polarization states in the tumor microenvironment. Int J Mol Sci 22(13):6995

Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416

Mills CD, Lenz LL, Harris RA (2016) A breakthrough: macrophage-directed cancer immunotherapy. Cancer Res 76(3):513–516

Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416

Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771

DeNardo DG, Ruffell B (2019) Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 19(6):369–382

Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

Candido J, Hagemann T (2013) Cancer-related inflammation. J Clin Immunol 33(Suppl 1):S79-84

Qu X, Tang Y, Hua S (2018) Immunological approaches towards cancer and inflammation: a cross talk. Front Immunol 9:563

Tang X (2013) Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett 332(1):3–10

Cassetta L, Pollard JW (2018) Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 17(12):887–904

Locati M, Curtale G, Mantovani A (2020) Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol 15:123–147

Rigoni TS, Vellozo NS, Guimarães-Pinto K, Cabral-Piccin M, Fabiano-Coelho L, Matos-Silva TC et al (2022) Axl receptor induces efferocytosis, dampens M1 macrophage responses and promotes heart pathology in Trypanosoma cruzi infection. Commun Biol 5(1):1421

Nakagawa M, Karim MR, Izawa T, Kuwamura M, Yamate J (2021) Immunophenotypical characterization of M1/M2 macrophages and lymphocytes in cisplatin-induced rat progressive renal fibrosis. Cells 10(2):257

Yunna C, Mengru H, Lei W, Weidong C (2020) Macrophage M1/M2 polarization. Eur J Pharmacol 877:173090

Kerneur C, Cano CE, Olive D (2022) Major pathways involved in macrophage polarization in cancer. Front Immunol 13:1026954

Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X (2020) Tumor-associated macrophages: recent insights and therapies. Front Oncol 10:188

Schweer D, McAtee A, Neupane K, Richards C, Ueland F, Kolesar J (2022) Tumor-associated macrophages and ovarian cancer: implications for therapy. Cancers (Basel) 14(9):2220

Brown JM, Recht L, Strober S (2017) The promise of targeting macrophages in cancer therapy. Clin Cancer Res 23(13):3241–3250

Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in cancer. Trends Immunol 40(4):310–327

Li X, Liu R, Su X, Pan Y, Han X, Shao C et al (2019) Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer 18(1):177

Zhang SY, Song XY, Li Y, Ye LL, Zhou Q, Yang WB (2020) Tumor-associated macrophages: a promising target for a cancer immunotherapeutic strategy. Pharmacol Res 161:105111

Laviron M, Boissonnas A (2019) Ontogeny of tumor-associated macrophages. Front Immunol 10:1799

Huang R, Wang S, Wang N, Zheng Y, Zhou J, Yang B et al (2020) CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating β-catenin/STAT3 signaling. Cell Death Dis 11(4):1–20

Pan Y, Yu Y, Wang X, Zhang T (2020) Tumor-associated macrophages in tumor immunity. Front Immunol 11:583084

Wang Y-f, Yu L, Hu Z-l, Fang Y-f, Shen Y-y, Song M-f et al (2022) Regulation of CCL2 by EZH2 affects tumor-associated macrophages polarization and infiltration in breast cancer. Cell Death Dis 13(8):1–15

Boutilier AJ, Elsawa SF (2021) Macrophage polarization states in the tumor microenvironment. Int J Mol Sci 22(13):6995

Valeta-Magara A, Gadi A, Volta V, Walters B, Arju R, Giashuddin S et al (2019) Inflammatory breast cancer promotes development of M2 tumor-associated macrophages and cancer mesenchymal cells through a complex chemokine networkchemokines and macrophages in inflammatory breast cancer. Can Res 79(13):3360–3371

Reyes ME, de La Fuente M, Hermoso M, Ili CG, Brebi P (2020) Role of CC chemokines subfamily in the platinum drugs resistance promotion in cancer. Front Immunol 11:901

Liu M, Tong Z, Ding C, Luo F, Wu S, Wu C et al (2020) Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer. J Clin Investig 130(4):2081–2096

Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in cancer. Trends Immunol 40(4):310–327

Oshi M, Tokumaru Y, Asaoka M, Yan L, Satyananda V, Matsuyama R et al (2020) M1 macrophage and M1/M2 ratio defined by transcriptomic signatures resemble only part of their conventional clinical characteristics in breast cancer. Sci Rep 10(1):1–12

Macciò A, Gramignano G, Cherchi MC, Tanca L, Melis L, Madeddu C (2020) Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci Rep 10(1):1–8

Nath N, Kashfi K (2020) Tumor associated macrophages and ‘NO.’ Biochem Pharmacol 176:113899

Gao J, Liang Y, Wang L (2022) Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol 13:888713

Choi J-N, Sun EG, Cho S-H (2019) IL-12 enhances immune response by modulation of myeloid derived suppressor cells in tumor microenvironment. Chonnam Med J 55(1):31–39

Qi L, Chen J, Yang Y, Hu W (2020) Hypoxia correlates with poor survival and M2 macrophage infiltration in colorectal cancer. Front Oncol 10:566430

Sadhukhan P, Feng M, Illingworth E, Sloma I, Ugurlu MT, Sille F et al (2021) Abstract P174: YAP1 drives immune suppression in urothelial carcinoma of bladder. Mol Cancer Ther 20(12_Supplement):P174-P

Kobatake K, Ikeda K-i, Nakata Y, Yamasaki N, Ueda T, Kanai A et al (2020) Kdm6a deficiency activates inflammatory pathways, promotes M2 macrophage polarization, and causes bladder cancer in cooperation with p53 dysfunctionKdm6a deficiency in bladder cancer. Clin Cancer Res 26(8):2065–79

Kang J, Lee D, Lee KJ, Yoon JE, Kwon J-H, Seo Y et al (2022) Tumor-suppressive effect of metformin via the regulation of M2 macrophages and myeloid-derived suppressor cells in the tumor microenvironment of colorectal cancer. Cancers 14(12):2881

Najafi M, Farhood B, Mortezaee K (2019) Contribution of regulatory T cells to cancer: a review. J Cell Physiol 234(6):7983–7993

Zhang J, Zhou X, Hao H (2022) Macrophage phenotype-switching in cancer. Eur J Pharmacol 21:175229

Yang Y, Hou J, Liu J, Bhushan S, Wu G (2022) The origins of resident macrophages in mammary gland influence the tumorigenesis of breast cancer. Int Immunopharmacol 110:109047

Xu J, Liu X-Y, Zhang Q, Liu H, Zhang P, Tian Z-B et al (2022) Crosstalk among YAP, LncRNA, and tumor-associated macrophages in tumorigenesis development. Front Oncol 11:5627

Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA (2022) The complex role of tumor-infiltrating macrophages. Nat Immunol 23(8):1148–1156

Liu L, Li H, Wang J, Zhang J, Liang X-J, Guo W et al (2022) Leveraging macrophages for cancer theranostics. Adv Drug Deliv Rev 183:114136

Kumari N, Choi SH (2022) Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res 41(1):1–39

Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G et al (2022) The soldiers needed to be awakened: tumor-infiltrating immune cells. Front Gen 13

Franco PIR, Rodrigues AP, de Menezes LB, Miguel MP (2020) Tumor microenvironment components: allies of cancer progression. Pathol Res Prac 216(1):152729

Ran S, Montgomery KE (2012) Macrophage-mediated lymphangiogenesis: the emerging role of macrophages as lymphatic endothelial progenitors. Cancers (Basel) 4(3):618–657

Rao S, Lobov IB, Vallance JE, Tsujikawa K, Shiojima I, Akunuru S et al (2007) Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. Development 134(24):4449–4458

Stefater JA 3rd, Lewkowich I, Rao S, Mariggi G, Carpenter AC, Burr AR et al (2011) Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature 474(7352):511–515

Zerlin M, Julius MA, Kitajewski J (2008) Wnt/frizzled signaling in angiogenesis. Angiogenesis 11(1):63–69

Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631

De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474

Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S et al (2019) Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res 79(4):795–806

Albini A, Bruno A, Noonan DM, Mortara L (2018) Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy. Front Immunol 9:527

Yeo EJ, Cassetta L, Qian BZ, Lewkowich I, Li JF, Stefater JA 3rd et al (2014) Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res 74(11):2962–2973

Ramirez-Pedraza M, Fernández M (2019) Interplay between macrophages and angiogenesis: a double-edged sword in liver disease. Front Immunol 10:2882

Squadrito ML, De Palma M (2011) Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol Aspects Med 32(2):123–145

Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A et al (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19(4):512–526

Belgiovine C, D’Incalci M, Allavena P, Frapolli R (2016) Tumor-associated macrophages and anti-tumor therapies: complex links. Cell Mol Life Sci 73(13):2411–2424

Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455

Lan J, Sun L, Xu F, Liu L, Hu F, Song D et al (2019) M2 macrophage-derived exosomes promote cell migration and invasion in colon cancer. Cancer Res 79(1):146–158

Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J et al (2019) Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J Exp Clin Cancer Res 38(1):310

Zhou J, Li X, Wu X, Zhang T, Zhu Q, Wang X et al (2018) Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res 6(12):1578–1592

Sun D, Luo T, Dong P, Zhang N, Chen J, Zhang S et al (2020) M2-polarized tumor-associated macrophages promote epithelial-mesenchymal transition via activation of the AKT3/PRAS40 signaling pathway in intrahepatic cholangiocarcinoma. J Cell Biochem 121(4):2828–2838

Dudas J, Ladanyi A, Ingruber J, Steinbichler TB, Riechelmann H (2020) Epithelial to mesenchymal transition: a mechanism that fuels cancer radio/chemoresistance. Cells 9(2)

Zheng P, Chen L, Yuan X, Luo Q, Liu Y, Xie G et al (2017) Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res 36(1):53

Halbrook CJ, Pontious C, Kovalenko I, Lapienyte L, Dreyer S, Lee HJ et al (2019) Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab 29(6):1390–1399

Kimura Y, Inoue A, Hangai S, Saijo S, Negishi H, Nishio J et al (2016) The innate immune receptor dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc Natl Acad Sci U S A 113(49):14097–14102

Quaranta V, Rainer C, Nielsen SR, Raymant ML, Ahmed MS, Engle DD et al (2018) Macrophage-derived granulin drives resistance to immune checkpoint inhibition in metastatic pancreatic cancer. Cancer Res 78(15):4253–4269

Fu SY, Chen FH, Wang CC, Yu CF, Chiang CS, Hong JH (2021) Role of myeloid-derived suppressor cells in high-dose-irradiated TRAMP-C1 tumors: a therapeutic target and an index for assessing tumor microenvironment. Int J Radiat Oncol Biol Phys 109(5):1547–1558

Chiang CS, Fu SY, Wang SC, Yu CF, Chen FH, Lin CM et al (2012) Irradiation promotes an m2 macrophage phenotype in tumor hypoxia. Front Oncol 2:89

Locati M, Curtale G, Mantovani A (2020) Diversity, mechanisms and significance of macrophage plasticity. Annu Rev Pathol 15:123

Bercovici N, Guérin MV, Trautmann A, Donnadieu E (2019) The remarkable plasticity of macrophages: a chance to fight cancer. Front Immunol 10:1563

Zhuang X, Zhang H, Hu G (2019) Cancer and microenvironment plasticity: double-edged swords in metastasis. Trends Pharmacol Sci 40(6):419–429

Hasan MN, Capuk O, Patel SM, Sun D (2022) The role of metabolic plasticity of tumor-associated macrophages in shaping the tumor microenvironment immunity. Cancers 14(14):3331

Jeong H, Kim S, Hong B-J, Lee C-J, Kim Y-E, Bok S et al (2019) Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Can Res 79(4):795–806

Puthenveetil A, Dubey S (2020) Metabolic reprograming of tumor-associated macrophages. Ann Transl Med 8(16):1030

Mehla K, Singh PK (2019) Metabolic regulation of macrophage polarization in cancer. Trends Cancer 5(12):822–834

Soto‐Heredero G, Gomez de las Heras MM, Gabandé‐Rodríguez E, Oller J, Mittelbrunn M (2020) Glycolysis–a key player in the inflammatory response. FEBS J 287(16):3350–69

Pearce E, Pearce E (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38(4):633–643

Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z (2019) Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26(1):1–13

Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X (2020) The role of the pentose phosphate pathway in diabetes and cancer. Front Endocrinol 11:365

Wu L, Zhang X, Zheng L, Zhao H, Yan G, Zhang Q et al (2020) RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesisRIPK3 regulates immunometabolism in hepatocarcinogenesis. Cancer Immunol Res 8(5):710–721

Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch’ng ES (2020) Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol 9:1512

Huynh J, Chand A, Gough D, Ernst M (2019) Therapeutically exploiting STAT3 activity in cancer—using tissue repair as a road map. Nat Rev Cancer 19(2):82–96

Wang S, Liu R, Yu Q, Dong L, Bi Y, Liu G (2019) Metabolic reprogramming of macrophages during infections and cancer. Cancer Lett 452:14–22

Chen C-L, Hsu S-C, Ann DK, Yen Y, Kung H-J (2021) Arginine signaling and cancer metabolism. Cancers 13(14):3541

Lee YS, Song SJ, Hong HK, Oh BY, Lee WY, Cho YB (2020) The FBW7-MCL-1 axis is key in M1 and M2 macrophage-related colon cancer cell progression: validating the immunotherapeutic value of targeting PI3Kγ. Exp Mol Med 52(5):815–831

Miyazaki T, Ishikawa E, Matsuda M, Sugii N, Kohzuki H, Akutsu H et al (2020) Infiltration of CD163-positive macrophages in glioma tissues after treatment with anti-PD-L1 antibody and role of PI3Kγ inhibitor as a combination therapy with anti-PD-L1 antibody in in vivo model using temozolomide-resistant murine glioma-initiating cells. Brain Tumor Pathol 37(2):41–49

Sheida F, Razi S, Keshavarz-Fathi M, Rezaei N (2022) The role of myeloid-derived suppressor cells in lung cancer and targeted immunotherapies. Expert Rev Anticancer Ther 22(1):65–81

Borek B, Gajda T, Golebiowski A, Blaszczyk R (2020) Boronic acid-based arginase inhibitors in cancer immunotherapy. Bioorg Med Chem 28(18):115658

Yang J, Zhang Q, Wang J, Lou Y, Hong Z, Wei S et al (2022) Dynamic profiling of immune microenvironment during pancreatic cancer development suggests early intervention and combination strategy of immunotherapy. EBioMedicine 78:103958

Penta D, Natesh J, Mondal P, Meeran SM (2022) Dietary diindolylmethane enhances the therapeutic effect of centchroman in breast cancer by inhibiting neoangiogenesis. Nutr Cancer 75:734–749

Baci D, Bruno A, Cascini C, Gallazzi M, Mortara L, Sessa F et al (2019) Acetyl-L-carnitine downregulates invasion (CXCR4/CXCL12, MMP-9) and angiogenesis (VEGF, CXCL8) pathways in prostate cancer cells: rationale for prevention and interception strategies. J Exp Clin Cancer Res 38(1):1–17

Asokan S, Bandapalli OR (2021) CXCL8 signaling in the tumor microenvironment. Tumor Microenviron 1302:25–39

Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L (2019) Macrophages and metabolism in the tumor microenvironment. Cell Metab 30(1):36–50

Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J et al (2021) Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med 11(1):e288

Galván-Peña S, Carroll RG, Newman C, Hinchy EC, Palsson-McDermott E, Robinson EK et al (2019) Malonylation of GAPDH is an inflammatory signal in macrophages. Nat Commun 10(1):1–11

Penny HL, Sieow JL, Adriani G, Yeap WH, See Chi Ee P, San Luis B et al (2016) Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology 5(8):e1191731

Zhao Q, Chu Z, Zhu L, Yang T, Wang P, Liu F et al (2017) 2-Deoxy-d-glucose treatment decreases anti-inflammatory M2 macrophage polarization in mice with tumor and allergic airway inflammation. Front Immunol 8:637

Liu D, Chang C, Lu N, Wang X, Lu Q, Ren X et al (2017) Comprehensive proteomics analysis reveals metabolic reprogramming of tumor-associated macrophages stimulated by the tumor microenvironment. J Proteome Res 16(1):288–297

Menga A, Favia M, Spera I, Vegliante MC, Gissi R, De Grassi A et al (2021) N-acetylaspartate release by glutaminolytic ovarian cancer cells sustains protumoral macrophages. EMBO Rep 22(9):e51981

Hinshaw DC, Hanna A, Lama-Sherpa T, Metge B, Kammerud SC, Benavides GA et al (2021) Hedgehog signaling regulates metabolism and polarization of mammary tumor-associated macrophages. Can Res 81(21):5425–5437

Hu B, Lin JZ, Yang XB, Sang XT (2020) Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: a review. Cell Prolif 53(3):e12772

Dubey S, Ghosh S, Goswami D, Ghatak D, De R (2022) Immunometabolic attributes and mitochondria-associated signaling of tumor-associated macrophages in tumor microenvironment modulate cancer progression. Biochem Phar 208:115369

Ramesh A, Malik V, Brouillard A, Kulkarni A (2022) Supramolecular nanotherapeutics enable metabolic reprogramming of tumor‐associated macrophages to inhibit tumor growth. J Biomed Mater Res Part A 110(8):1448–1159

Wang J, Mi S, Ding M, Li X, Yuan S (2022) Metabolism and polarization regulation of macrophages in the tumor microenvironment. Cancer Lett 543:215766

Chen T-W, Hung W-Z, Chiang S-F, Chen WT-L, Ke T-W, Liang J-A et al (2022) Dual inhibition of TGFβ signaling and CSF1/CSF1R reprograms tumor-infiltrating macrophages and improves response to chemotherapy via suppressing PD-L1. Cancer Lett 543:215795

Zhou Y, Su W, Liu H, Chen T, Höti N, Pei H et al (2020) Fatty acid synthase is a prognostic marker and associated with immune infiltrating in gastric cancers precision medicine. Biomark Med 14(3):185–199

Malfitano AM, Pisanti S, Napolitano F, Di Somma S, Martinelli R, Portella G (2020) Tumor-associated macrophage status in cancer treatment. Cancers 12(7):1987

Huang T, Song C, Zheng L, Xia L, Li Y, Zhou Y (2019) The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy. Mol Cancer 18(1):1–11

Baba Y, Nomoto D, Okadome K, Ishimoto T, Iwatsuki M, Miyamoto Y et al (2020) Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma. Cancer Sci 111(9):3132–3141

Huang Q, Lei Y, Li X, Guo F, Liu M (2020) A highlight of the mechanisms of immune checkpoint blocker resistance. Front Cell Dev Biol 8:580140

Kashfi K, Kannikal J, Nath N (2021) Macrophage reprogramming and cancer therapeutics: role of iNOS-derived NO. Cells 10(11):3194

Lopez-Yrigoyen M, Cassetta L, Pollard JW (2021) Macrophage targeting in cancer. Ann N Y Acad Sci 1499(1):18–41

Wang Y-C, Wang X, Yu J, Ma F, Li Z, Zhou Y et al (2021) Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat Commun 12(1):1–17

Kadomoto S, Izumi K, Mizokami A (2021) Roles of CCL2-CCR2 Axis in the tumor microenvironment. Int J Mol Sci 22(16):8530

Xu M, Wang Y, Xia R, Wei Y, Wei X (2021) Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting. Cell Prolif 54(10):e13115

Gautam SK, Basu S, Aithal A, Dwivedi NV, Gulati M, Jain M (2022) Regulation of pancreatic cancer therapy resistance by chemokines. Semin Cancer Biol 86:69–80

Deng D, Patel R, Chiang C-Y, Hou P (2022) Role of the tumor microenvironment in regulating pancreatic cancer therapy resistance. Cells 11(19):2952

Chen Y, Jin H, Song Y, Huang T, Cao J, Tang Q et al (2021) Targeting tumor-associated macrophages: a potential treatment for solid tumors. J Cell Physiol 236(5):3445–3465

Zhang S-Y, Song X-Y, Li Y, Ye L-L, Zhou Q, Yang W-B (2020) Tumor-associated macrophages: a promising target for a cancer immunotherapeutic strategy. Pharmacol Res 161:105111

Karagiannis GS, Rivera-Sanchez L, Duran CL, Oktay MH, Condeelis JS (2020) Emerging roles of Cxcl12/Cxcr4 signaling axis in breast cancer metastasis. Am Assoc Immnol 204:90–94

Tang C, Lei X, Xiong L, Hu Z, Tang B (2021) HMGA1B/2 transcriptionally activated-POU1F1 facilitates gastric carcinoma metastasis via CXCL12/CXCR4 axis-mediated macrophage polarization. Cell Death Dis 12(5):1–15

Braoudaki M, Ahmad MS, Mustafov D, Seriah S, Siddiqui MN, Siddiqui SS (2022) Chemokines and chemokine receptors in colorectal cancer; multifarious roles and clinical impact. Semin Cancer Biol 86:436–449

Kielbassa K, Vegna S, Ramirez C, Akkari L (2019) Understanding the origin and diversity of macrophages to tailor their targeting in solid cancers. Front Immunol 10:2215

Fujiwara T, Yakoub MA, Chandler A, Christ AB, Yang G, Ouerfelli O et al (2021) CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infiltration in the sarcoma microenvironment. Mol Cancer Ther 20(8):1388–1399

Uddin M, Wang X (2022) Identification of key tumor stroma-associated transcriptional signatures correlated with survival prognosis and tumor progression in breast cancer. Breast Cancer 29(3):541–561

Babaeijandaghi F, Cheng R, Kajabadi N, Soliman H, Chang C-K, Smandych J et al (2022) Metabolic reprogramming of skeletal muscle by resident macrophages points to CSF1R inhibitors as muscular dystrophy therapeutics. Sci Transl Med 14(651):eabg7504

Taylor MH, Leong S, Tan G, Leary CB, Li X, Kuida K et al (2019) Phase 1 study of DCC-3014, an oral inhibitor of CSF1R, to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics in patients with advanced solid tumors, including diffuse-type tenosynovial giant cell tumor. Prostate 3:8

Autio KA, Klebanoff CA, Schaer D, Kauh JSW, Slovin SF, Adamow M et al (2020) Immunomodulatory activity of a colony-stimulating factor-1 receptor inhibitor in patients with advanced refractory breast or prostate cancer: a phase I studyCSF-1R inhibition for advanced breast or prostate cancer. Clin Cancer Res 26(21):5609–5620

Bissinger S, Hage C, Wagner V, Maser I-P, Brand V, Schmittnaegel M et al (2021) Macrophage depletion induces edema through release of matrix-degrading proteases and proteoglycan deposition. Sci Transl Med 13(598):eabd4550

Sharma A, Liaw K, Sharma R, Spriggs T, Appiani La Rosa S, Kannan S et al (2020) Dendrimer-mediated targeted delivery of rapamycin to tumor-associated macrophages improves systemic treatment of glioblastoma. Biomacromolecules 21(12):5148–61

Keenan TE, Guerriero JL, Barroso-Sousa R, Li T, O’Meara T, Giobbie-Hurder A et al (2021) Molecular correlates of response to eribulin and pembrolizumab in hormone receptor-positive metastatic breast cancer. Nat Commun 12(1):1–13

Sanchez LR, Borriello L, Entenberg D, Condeelis JS, Oktay MH, Karagiannis GS (2019) The emerging roles of macrophages in cancer metastasis and response to chemotherapy. J Leukoc Biol 106(2):259–274

Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V et al (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25(6):846–859

Pradel LP, Ooi CH, Romagnoli S, Cannarile MA, Sade H, Rüttinger D et al (2016) Macrophage susceptibility to emactuzumab (RG7155) treatment. Mol Cancer Ther 15(12):3077–3086

Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272

Seton-Rogers S (2013) Tumour microenvironment: teaching old macrophages new tricks. Nat Rev Cancer 13(11):753

Barca C, Foray C, Hermann S, Herrlinger U, Remory I, Laoui D et al (2021) The colony stimulating factor-1 receptor (CSF-1R)-mediated regulation of microglia/macrophages as a target for neurological disorders (glioma, stroke). Front Immunol 12:787307

Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT et al (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352(6288):aad3018

Seoane J (2016) The taming of the TAMs. Trends Cell Biol 26(8):562–563

Lamhamedi-Cherradi SE, Menegaz BA, Ramamoorthy V, Vishwamitra D, Wang Y, Maywald RL et al (2016) IGF-1R and mTOR blockade: novel resistance mechanisms and synergistic drug combinations for Ewing sarcoma. J Natl Cancer Inst 108(12)

Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S et al (2016) PI3Kγ is a molecular switch that controls immune suppression. Nature 539(7629):437–442

Zheng W, Pollard JW (2016) Inhibiting macrophage PI3Kγ to enhance immunotherapy. Cell Res 26(12):1267–1268

Kaneda MM, Cappello P, Nguyen AV, Ralainirina N, Hardamon CR, Foubert P et al (2016) Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression. Cancer Discov 6(8):870–885

De Vera AA, Gupta P, Lei Z, Liao D, Narayanan S, Teng Q et al (2019) Immuno-oncology agent IPI-549 is a modulator of P-glycoprotein (P-gp, MDR1, ABCB1)-mediated multidrug resistance (MDR) in cancer: in vitro and in vivo. Cancer Lett 442:91–103

Barclay AN, Van den Berg TK (2014) The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol 32:25–50

Logtenberg MEW, Scheeren FA, Schumacher TN (2020) The CD47-SIRPα immune checkpoint. Immunity 52(5):742–752

Grottoli M, Carrega P, Zullo L, Dellepiane C, Rossi G, Parisi F et al (2022) Immune checkpoint blockade: a strategy to unleash the potential of natural killer cells in the anti-cancer therapy. Cancers 14(20):5046

Gholamin S, Mitra SS, Feroze AH, Liu J, Kahn SA, Zhang M et al (2017) Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci Transl Med 9(381)

Villanueva MT (2017) Anticancer therapy: re-educating macrophages. Nat Rev Drug Discov 16(5):313

Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX, Weissman IL (2019) Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 19(10):568–586

Lentz RW, Colton MD, Mitra SS, Messersmith WA (2021) Innate immune checkpoint inhibitors: the next breakthrough in medical oncology? Mol Cancer Ther 20(6):961–974

Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY et al (2018) Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 19(1):76–84

Zhang CC, Fu YX (2018) Another way to not get eaten. Nat Immunol 19(1):6–7

Siu LL, Wang D, Hilton J, Geva R, Rasco D, Perets R, Abraham AK, Wilson DC, Markensohn JF, Lunceford J, Suttner L, Siddiqi S, Altura RA, Maurice-Dror C (2022) Correction: first-in-class anti-immunoglobulin-like transcript 4 myeloid-specific antibody MK-4830 abrogates a PD-1 resistance mechanism in patients with advanced solid tumors. Clin Cancer Res 28(18):4158

Chen HM, van der Touw W, Wang YS, Kang K, Mai S, Zhang J et al (2018) Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J Clin Invest 128(12):5647‒5662

Sharma N, Atolagbe OT, Ge Z, Allison JP (2021) LILRB4 suppresses immunity in solid tumors and is a potential target for immunotherapy. J Exp Med 218(7)

Deng M, Gui X, Kim J, Xie L, Chen W, Li Z et al (2018) LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature 562(7728):605–609

Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S et al (2017) Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 543(7645):428–432

Reichman H, Munitz A (2017) Harnessing class II histone deacetylases in macrophages to combat breast cancer. Cell Mol Immunol 14(7):575–577

Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W et al (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331(6024):1612–1616

Nanda S (2011) Cancer: CD40 agonists—a promising new treatment for pancreatic cancer? Nat Rev Gastroenterol Hepatol 8(6):300

Baumann D, Hägele T, Mochayedi J, Drebant J, Vent C, Blobner S et al (2020) Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy. Nat Commun 11(1):2176

Baumann D, Offringa R (2020) Targeting immune-checkpoint inhibitor resistance mechanisms by MEK inhibitor and agonist anti-CD40 antibody combination therapy. Cell Stress 4(10):248–251

Ji N, Mukherjee N, Morales EE, Tomasini ME, Hurez V, Curiel TJ et al (2019) Percutaneous BCG enhances innate effector antitumor cytotoxicity during treatment of bladder cancer: a translational clinical trial. Oncoimmunology 8(8):e1614857

Ji N, Mukherjee N, Reyes RM, Gelfond J, Javors M, Meeks JJ et al (2021) Rapamycin enhances BCG-specific γδ T cells during intravesical BCG therapy for non-muscle invasive bladder cancer: a randomized, double-blind study. J Immunother Cancer 9(3)

Mullins SR, Vasilakos JP, Deschler K, Grigsby I, Gillis P, John J et al (2019) Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies. J Immunother Cancer 7(1):244

Fakhari A, Nugent S, Elvecrog J, Vasilakos J, Corcoran M, Tilahun A et al (2017) Thermosensitive gel-based formulation for intratumoral delivery of toll-like receptor 7/8 dual agonist, MEDI9197. J Pharm Sci 106(8):2037–2045

Li B, Ren M, Zhou X, Han Q, Cheng L (2020) Targeting tumor associated macrophages in head and neck squamous cell carcinoma. Oral Oncol 106:104723

Zawit M, Swami U, Awada H, Arnouk J, Milhem M, Zakharia Y (2021) Current status of intralesional agents in treatment of malignant melanoma. Ann Transl Med 9(12)

Agrawal S, Kandimalla ER (2019) Intratumoural immunotherapy: activation of nucleic acid sensing pattern recognition receptors. Immuno-Oncol Technol 3:15–23

Olingy CE, Dinh HQ, Hedrick CC (2019) Monocyte heterogeneity and functions in cancer. J Leukoc Biol 106(2):309–322

Anderson NM, Simon MC (2020) The tumor microenvironment. Curr Biol 30(16):R921–R925

Tang T, Huang X, Zhang G, Hong Z, Bai X, Liang T (2021) Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther 6(1):1–13

van de Wall S, Santegoets KC, van Houtum EJ, Büll C, Adema GJ (2020) Sialoglycans and siglecs can shape the tumor immune microenvironment. Trends Immunol 41(4):274–285

Liu Y, Cao X (2015) The origin and function of tumor-associated macrophages. Cell Mol Immunol 12(1):1–4

Cassetta L, Pollard JW (2020) Tumor-associated macrophages. Curr Biol 30(6):R246–R248

Xiang X, Wang J, Lu D, Xu X (2021) Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 6(1):1–12

Hoeksema MA, de Winther MP (2016) Epigenetic regulation of monocyte and macrophage function. Antioxid Redox Signal 25(14):758‒774

Porta C, Riboldi E, Ippolito A, Sica A (eds) (2015) Molecular and epigenetic basis of macrophage polarized activation. Semin Immunol 27(4):237–248