The role of jumps and leverage in forecasting volatility in international equity markets
Tài liệu tham khảo
Andersen, 2007, Roughing it up: including jump components in the measurement, modeling and forecasting of return volatility, Rev. Econ. Stat., 89, 701, 10.1162/rest.89.4.701
Andersen, 2001, The distribution of realized stock return volatility, J. Financ. Econ., 61, 43, 10.1016/S0304-405X(01)00055-1
Andersen, 2003, Modeling and forecasting realized volatility, Econometrica, 71, 579, 10.1111/1468-0262.00418
Andrews, 1992, An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator, Econometrica, 60, 953, 10.2307/2951574
Barndorff-Nielsen, 2004, Power and bipower variation with stochastic volatility and jumps, J. Financ. Economet., 2, 1, 10.1093/jjfinec/nbh001
Barndorff-Nielsen, 2005
Barndorff-Nielsen, 2006, Econometrics of testing for jumps in financial economics using bipower variation, J. Financ. Economet., 4, 1, 10.1093/jjfinec/nbi022
Bollerslev, 2008, Risk, jumps, and diversification, J. Economet., 144, 234, 10.1016/j.jeconom.2008.01.006
Bollerslev, 2006, Leverage and volatility feedback effect in high-frequency data, J. Financ. Economet., 4, 353, 10.1093/jjfinec/nbj014
Buncic, 2016, Global equity market volatility spillovers: a broader role for the United States, Int. J. Forecast., 32, 1317, 10.1016/j.ijforecast.2016.05.001
Campbell, 2008, Predicting excess stock returns out of sample: can anything beat the historical average?, Rev. Financ. Stud., 21, 1509, 10.1093/rfs/hhm055
Corsi, 2009, A simple approximate long-memory model of realized volatility, J. Financ. Economet., 7, 174, 10.1093/jjfinec/nbp001
Corsi, 2012, HAR modeling for realized volatility forecasting, 363
Corsi, 2012, Discrete-time volatility forecasting with persistent leverage effect and the link with continuous-time volatility modeling, J. Bus. Econ. Stat., 30, 368, 10.1080/07350015.2012.663261
Diebold, 1995, Comparing predictive accuracy, J. Bus. Econ. Stat., 13, 253
Figlewski, Stephen, Wang, Xiaozu, 2000. Is the ‘Leverage Effect’ a Leverage Effect? SSRN Working Paper No. 256109. Available from: <http://ssrn.com/abstract=256109>.
Giacomini, 2006, Tests of conditional predictive ability, Econometrica, 74, 1545, 10.1111/j.1468-0262.2006.00718.x
Heber, Gerd, Lunde, Asger, Shephard, Neil, Sheppard, Kevin, 2009. Oxford-Man Institute’s Realized Library. Oxford-Man Institute, University of Oxford. Available from: <http://realized.oxford-man.ox.ac.uk/>.
Huang, 2005, The relative contribution of jumps to total price variance, J. Financ. Economet., 3, 456, 10.1093/jjfinec/nbi025
Liu, 2015, Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes, J. Economet., 187, 293, 10.1016/j.jeconom.2015.02.008
Müller, Ulrich A., Dacorogna, Michel M., Davé, Rakhal D., Olsen, Richard B., Pictet, Olivier V., Ward, John R., 1993. Fractals and intrinsic time – a challenge to econometricians. In: Invited presentation at the 39th International AEA Conference on Real Time Econometrics, 14–15 October 1993, Luxembourg.
Newey, 1994, Automatic lag selection in covariance matrix estimation, Rev. Econ. Stud., 61, 631, 10.2307/2297912
Patton, 2015, Good volatility, bad volatility: signed jumps and the persistence of volatility, Rev. Econ. Stat., 97, 683, 10.1162/REST_a_00503
Prokopczuk, 2016, Do jumps matter for volatility forecasting? Evidence from energy markets, J. Fut. Markets, 36, 758, 10.1002/fut.21759
Rapach, 2013, International stock return predictability: what is the role of the United States?, J. Finan., 68, 1633, 10.1111/jofi.12041
Rigobon, 2009, Bias from censored regressors, J. Bus. Econ. Stat., 27, 340, 10.1198/jbes.2009.06119