The role of fusion peptides in depth-dependent membrane organization and dynamics in promoting membrane fusion

Chemistry and Physics of Lipids - Tập 234 - Trang 105025 - 2021
Geetanjali Meher1, Hirak Chakraborty1,2
1School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
2Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India

Tài liệu tham khảo

Abrams, 1993, Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup, Biochemistry, 32, 10826, 10.1021/bi00091a038 Abrams, 1992, Determination of the location of fluorescent probes attached to fatty acids using parallax analysis of fluorescence quenching: effect of carboxyl ionization state and environment on depth, Biochemistry, 31, 5322, 10.1021/bi00138a011 Apellániz, 2014, The three lives of viral fusion peptides, Chem. Phys. Lipids, 181, 40, 10.1016/j.chemphyslip.2014.03.003 Blume, 1988, Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups, Biochemistry, 27, 8239, 10.1021/bi00421a038 Blumenthal, 2012, HIV entry and envelope glycoprotein-mediated fusion, J. Biol. Chem., 287, 40841, 10.1074/jbc.R112.406272 Boggs, 1987, Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function, Biochim. Biophys. Acta, 906, 353, 10.1016/0304-4157(87)90017-7 Chakraborty, 2020, Mechanistic insights of host cell fusion of SARS-CoV-1 and SARS-CoV-2 from atomic resolution structure and membrane dynamics, Biophys. Chem., 265, 10.1016/j.bpc.2020.106438 Chakraborty, 2012, Activation thermodynamics of poly(ethylene glycol)-mediated model membrane fusion support mechanistic models of stalk and pore formation, Biophys. J., 102, 2751, 10.1016/j.bpj.2012.04.053 Chakraborty, 2013, Wild-type and mutant hemagglutinin fusion peptides alter bilayer structure as well as kinetics and activation thermodynamics of stalk and pore formation differently: mechanistic implications, Biophys. J., 105, 2495, 10.1016/j.bpj.2013.10.010 Chakraborty, 2014, pH alters PEG-mediated fusion of phosphatidylethanolamine-containing vesicles, Biophys. J., 107, 1327, 10.1016/j.bpj.2014.07.048 Chakraborty, 2015, Depth-dependent organization and dynamics of archaeal and eukaryotic membranes: development of membrane anisotropy gradient with natural evolution, Langmuir, 31, 11591, 10.1021/acs.langmuir.5b02760 Chakraborty, 2017, Depth-dependent membrane ordering by hemagglutinin fusion peptide promotes fusion, J. Phys. Chem. B, 121, 1640, 10.1021/acs.jpcb.7b00684 Chang, 2000, The amino-terminal region of the fusion peptide of influenza virus hemagglutinin HA2 inserts into sodium dodecyl sulfate micelle with residues 16-18 at the aqueous boundary at acidic pH. Oligomerization and the conformational flexibility, J. Biol. Chem., 275, 19150, 10.1074/jbc.M907148199 Chattopadhyay, 2003, Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach, Chem. Phys. Lipids, 122, 3, 10.1016/S0009-3084(02)00174-3 Chattopadhyay, 1987, Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids, Biochemistry, 26, 39, 10.1021/bi00375a006 Chattopadhyay, 1999, Depth-dependent solvent relaxation in membranes: wavelength-selective fluorescence as a membrane dipstick, Langmuir, 15, 2142, 10.1021/la981553e Chernomordik, 1996, Non-bilayer lipids and biological fusion intermediates, Chem. Phys. Lipids, 81, 203, 10.1016/0009-3084(96)02583-2 Cohen, 2016, How viruses invade cells, Biophys. J., 110, 1028, 10.1016/j.bpj.2016.02.006 Delahunty, 1996, Mutational analysis of the fusion peptide of the human immunodeficiency virus type 1: identification of critical glycine residues, Virology, 218, 94, 10.1006/viro.1996.0169 Dimitrov, 2003, Role of the fusion peptide and membrane-proximal domain in HIV-1 envelope glycoprotein-mediated membrane fusion, Biochemistry, 42, 14150, 10.1021/bi035154g Durell, 1997, What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review), Mol. Membr. Biol., 14, 97, 10.3109/09687689709048170 Durrer, 1996, H+-induced membrane insertion of influenza virus hemagglutinin involves the HA2 amino-terminal fusion peptide but not the coiled coil region, J. Biol. Chem., 271, 13417, 10.1074/jbc.271.23.13417 Epand, 2003, Fusion peptides and the mechanism of viral fusion, Biochim. Biophys. Acta, 1614, 116, 10.1016/S0005-2736(03)00169-X Epand, 2008, Proteins and cholesterol-rich domains, Biochim. Biophys. Acta, 1778, 1576, 10.1016/j.bbamem.2008.03.016 Epand, 1994, Membrane orientation of the SIV fusion peptide determines its effect on bilayer stability and ability to promote membrane fusion, Biochem. Biophys. Res. Commun., 205, 1938, 10.1006/bbrc.1994.2897 Falck, 2004, Impact of cholesterol on voids in phospholipid membranes, J. Chem. Phys., 121, 12676, 10.1063/1.1824033 Finer, 1974, Phospholipid hydration studied by deuteron magnetic resonace spectroscopy, Chem. Phys. Lipids, 12, 1, 10.1016/0009-3084(74)90064-4 Gabrys, 2013, Solid-state nuclear magnetic resonance measurements of HIV fusion peptide 13CO to lipid 31P proximities support similar partially inserted membrane locations of the α helical and β sheet peptide structures, J. Phys. Chem. A, 117, 9848, 10.1021/jp312845w Ge, 2009, Fusion peptide from influenza hemagglutinin increases membrane surface order: an electron-spin resonance study, Biophys. J., 96, 4925, 10.1016/j.bpj.2009.04.015 Gething, 1986, Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus, J. Cell Biol., 102, 11, 10.1083/jcb.102.1.11 Ghosh, 2020, Biochim. Biophys. Acta Biomembr., 1862, 10.1016/j.bbamem.2020.183404 Ghosh, 2015, Closed and semiclosed interhelical structures in membrane vs closed and open structures in detergent for the influenza virus hemagglutinin fusion peptide and correlation of hydrophobic surface area with fusion catalysis, J. Am. Chem. Soc., 137, 7548, 10.1021/jacs.5b04578 Haldar, 2010, Monitoring membrane protein conformational heterogeneity by fluorescence lifetime distribution analysis using the maximum entropy method, J. Fluoresc., 20, 407, 10.1007/s10895-009-0554-z Haldar, 2011, Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift, J. Phys. Chem. B, 115, 5693, 10.1021/jp200255e Haldar, 2012, Depth-dependent heterogeneity in membranes by fluorescence lifetime distribution analysis, J. Phys. Chem. Lett., 3, 2676, 10.1021/jz3012589 Han, 2001, Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin, Nat. Struct. Biol., 8, 715, 10.1038/90434 Haque, 2005, Properties and structures of the influenza and HIV fusion peptides on lipid membranes: implications for a role in fusion, Biophys. J., 89, 3183, 10.1529/biophysj.105.063032 Haque, 2011, Hemagglutinin fusion peptide mutants in model membranes: structural properties, membrane physical properties, and PEG-mediated fusion, Biophys. J., 101, 1095, 10.1016/j.bpj.2011.07.031 Horth, 1991, Theoretical and functional analysis of the SIV fusion peptide, EMBO J., 10, 2747, 10.1002/j.1460-2075.1991.tb07823.x Jacobson, 2019, The lateral organization and mobility of plasma membrane components, Cell, 177, 806, 10.1016/j.cell.2019.04.018 Jahn, 1999, Membrane fusion and exocytosis, Annu. Rev. Biochem., 68, 863, 10.1146/annurev.biochem.68.1.863 Jaroniec, 2005, Structure and dynamics of micelle-associated human immunodeficiency virus gp41 fusion domain, Biochemistry, 44, 16167, 10.1021/bi051672a Jendrasiak, 1974, The hydration of phospholipids, Biochim. Biophys. Acta, 337, 79, 10.1016/0005-2760(74)90042-3 Kaiser, 1998, Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth, Biochemistry, 37, 8180, 10.1021/bi980064a Kasson, 2010, Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails, PLoS Comput. Biol., 6, 10.1371/journal.pcbi.1000829 Kozlov, 1989, Stalk mechanism of vesicle fusion. Intermixing of aqueous contents, Eur. Biophys. J., 17, 121, 10.1007/BF00254765 Kozlovsky, 2002, Stalk model of membrane fusion: solution of energy crisis, Biophys. J., 82, 882, 10.1016/S0006-3495(02)75450-7 Krishnamoorthy, 2001, Fluorescence lifetime distribution in characterizing membrane microheterogeneity, J. Fluoresc., 11, 247, 10.1023/A:1013943721692 Ladbrooke, 1969, Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies, Chem. Phys. Lipids, 3, 304, 10.1016/0009-3084(69)90040-1 Lai, 2014, HIV gp41 fusion peptide increases membrane ordering in a cholesterol-dependent fashion, Biophys. J., 106, 172, 10.1016/j.bpj.2013.11.027 Lai, 2006, Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity, J. Biol. Chem., 281, 5760, 10.1074/jbc.M512280200 Lai, 2012, Fusion activity of HIV gp41 fusion domain is related to its secondary structure and depth of membrane insertion in a cholesterol-dependent fashion, J. Mol. Biol., 418, 3, 10.1016/j.jmb.2012.02.010 Larsson, 2013, Lipid tail protrusion in simulations predicts fusogenic activity of influenza fusion peptide mutants and conformational models, PLoS Comput. Biol., 9, 10.1371/journal.pcbi.1002950 Lee, 1997, Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion, Biochemistry, 36, 6251, 10.1021/bi970404c Lorieau, 2010, The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid:water interface, Proc. Natl. Acad. Sci. U. S. A., 107, 11341, 10.1073/pnas.1006142107 Lorizate, 2011, Role of lipids in virus replication, Cold Spring Harb. Perspect. Biol., 3, 10.1101/cshperspect.a004820 Martin, 1994, Correlation between fusogenicity of synthetic modified peptides corresponding to the NH2-terminal extremity of simian immunodeficiency virus gp32 and their mode of insertion into the lipid bilayer: an infrared spectroscopy study, J. Virol., 68, 1139, 10.1128/JVI.68.2.1139-1148.1994 Meher, 2019, Membrane composition modulates fusion by altering membrane properties and fusion peptide structure, J. Membr. Biol., 252, 261, 10.1007/s00232-019-00064-7 Meher, 2019, Membrane cholesterol modulates oligomeric status and peptide-membrane interaction of severe acute respiratory syndrome coronavirus fusion peptide, J. Phys. Chem. B, 123, 10654, 10.1021/acs.jpcb.9b08455 Meher, 2019, Cholesterol modulates membrane properties and the interaction of gp41 fusion peptide to promote membrane fusion, J. Phys. Chem. B, 123, 7113, 10.1021/acs.jpcb.9b04577 Melikyan, 2008, Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm, Retrovirology, 5, 111, 10.1186/1742-4690-5-111 Mukherjee, 2004, Membrane domains, Annu. Rev. Cell Dev. Biol., 20, 839, 10.1146/annurev.cellbio.20.010403.095451 Mukherjee, 2007, Dynamics and heterogeneity of bovine hippocampal membranes: role of cholesterol and proteins, Biochim. Biophys. Acta, 1768, 2130, 10.1016/j.bbamem.2007.05.025 Newman, 1975, Structural studies on phophatidylcholine-cholesterol mixed vesicles, Biochemistry, 14, 3363, 10.1021/bi00686a012 Nieva, 2003, Are fusion peptides a good model to study viral cell fusion?, Biochim. Biophys. Acta, 1614, 104, 10.1016/S0005-2736(03)00168-8 Pattnaik, 2018, Coronin 1 derived tryptophan-aspartic acid containing peptides inhibit membrane fusion, Chem. Phys. Lipids, 217, 35, 10.1016/j.chemphyslip.2018.10.005 Pattnaik, 2019, Cholesterol alters the inhibitory efficiency of peptide-based membrane fusion inhibitor, Biochim. Biophys. Acta, 1861, 10.1016/j.bbamem.2019.183056 Pattnaik, 2018, Exploring the mechanism of viral peptide-induced membrane fusion, Adv. Exp. Med. Biol., 1112, 69, 10.1007/978-981-13-3065-0_6 Pecheur, 1999, Peptides and membrane fusion: towards an understanding of the molecular mechanism of protein-induced fusion, J. Membr. Biol., 167, 1, 10.1007/s002329900466 Prats, 1987, Lateral proton conduction at a lipid/water interface. Effect of lipid nature and ionic content of the aqueous phase, Eur. J. Biochem., 162, 379, 10.1111/j.1432-1033.1987.tb10612.x Qiang, 2009, HIV fusion peptide and its cross-linked oligomers: efficient syntheses, significance of the trimer in fusion activity, correlation of beta strand conformation with membrane cholesterol, and proximity to lipid headgroups, Biochemistry, 48, 289, 10.1021/bi8015668 Qiang, 2008, J. Am. Chem. Soc., 130, 5459, 10.1021/ja077302m Qiang, 2009, A strong correlation between fusogenicity and membrane insertion depth of the HIV fusion peptide, Proc. Natl. Acad. Sci. U. S. A., 106, 15314, 10.1073/pnas.0907360106 Qiao, 1999, A specific point mutant at position 1 of the influenza hemagglutinin fusion peptide displays a hemifusion phenotype, Mol. Biol. Cell, 10, 2759, 10.1091/mbc.10.8.2759 Ranaweera, 2019, Biochemistry, 58, 2432, 10.1021/acs.biochem.8b01272 Rand, 1989, Hydration forces between phospholipid bilayers, Biochim. Biophys. Acta, 988, 351, 10.1016/0304-4157(89)90010-5 Ratnayake, 2015, pH-dependent vesicle fusion induced by the ectodomain of the human immunodeficiency virus membrane fusion protein gp41: Two kinetically distinct processes and fully-membrane-associated gp41 with predominant beta sheet fusion peptide conformation, Biochim. Biophys. Acta, 1848, 289, 10.1016/j.bbamem.2014.07.022 Reuven, 2012, HIV-1 gp41 transmembrane domain interacts with the fusion peptide: implication in lipid mixing and inhibition of virus-cell fusion, Biochemistry, 51, 2867, 10.1021/bi201721r Sackett, 2005, The HIV fusion peptide adopts intermolecular parallel beta-sheet structure in membranes when stabilized by the adjacent N-terminal heptad repeat: a 13C FTIR study, J. Mol. Biol., 350, 790, 10.1016/j.jmb.2005.05.030 Sackett, 2010, Comparative analysis of membrane-associated fusion peptide secondary structure and lipid mixing function of HIV gp41 constructs that model the early pre-hairpin intermediate and final hairpin conformations, J. Mol. Biol., 397, 301, 10.1016/j.jmb.2010.01.018 Sackett, 2014, Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel beta sheet fusion peptide structure in the final six-helix bundle state, J. Mol. Biol., 426, 1077, 10.1016/j.jmb.2013.11.010 San Martín, 2013, Structure and assembly of complex viruses, 329 Schmick, 2010, Major antiparallel and minor parallel beta sheet populations detected in the membrane-associated human immunodeficiency virus fusion peptide, Biochemistry, 49, 10623, 10.1021/bi101389r Sen, 1988, Direct measurement of headgroup hydration of polar lipids in inverted micelles, Chem. Phys. Lipids, 49, 179, 10.1016/0009-3084(88)90005-9 Sengupta, 2014, The transmembrane domain peptide of vesicular stomatitis virus promotes both intermediate and pore formation during PEG-mediated vesicle fusion, Biophys. J., 107, 1318, 10.1016/j.bpj.2014.03.053 Siegel, 1999, The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion, Biophys. J., 76, 291, 10.1016/S0006-3495(99)77197-3 Simon, 1982, Influence of cholesterol on water penetration into bilayers, Science, 216, 65, 10.1126/science.7063872 Singh, 2012, Organization and dynamics of hippocampal membranes in a depth-dependent manner: an electron spin resonance study, J. Phys. Chem. B, 116, 2999, 10.1021/jp211485a Small, 1967, Phase equilibria and structure of dry and hydrated egg lecithin, J. Lipid Res., 8, 551, 10.1016/S0022-2275(20)38874-X Söllner, 1994, Neurotransmission: harnessing fusion machinery at the synapse, Trends Neurosci., 17, 344, 10.1016/0166-2236(94)90178-3 Stubbs, 1995, Fluorescence techniques for probing water penetration into lipid bilayers, J. Fluoresc., 5, 19, 10.1007/BF00718779 Tamm, 2002, Structure and function of membrane fusion peptides, Biopolymers, 66, 249, 10.1002/bip.10261 Teissié, 1990, Lateral proton conduction in monolayers of phospholipids from extreme halophiles, Biochemistry, 29, 59, 10.1021/bi00453a008 Tristram-Nagle, 2010, HIV fusion peptide penetrates, disorders, and softens T-cell membrane mimics, J. Mol. Biol., 402, 139, 10.1016/j.jmb.2010.07.026 Ueda, 1986, Anesthetics release unfreezable and bound water in partially hydrated phospholipid lamellar systems and elevate phase transition temperature, Mol. Pharmacol., 29, 582 Volkov, 2013, Structural properties of gp41 fusion peptide at a model membrane interface, J. Phys. Chem. B, 117, 15527, 10.1021/jp405852r White, 2008, Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme, Crit. Rev. Biochem. Mol. Biol., 43, 189, 10.1080/10409230802058320 Worcester, 1976, Structural analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutrol diffraction, J. Mol. Biol., 100, 359, 10.1016/S0022-2836(76)80068-X Yang, 2003, A rhombohedral phase of lipid containing a membrane fusion intermediate structure, Biophys. J., 84, 1808, 10.1016/S0006-3495(03)74988-1 Yang, 2004, A trimeric HIV-1 fusion peptide construct which does not self-associate in aqueous solution and which has 15-fold higher membrane fusion rate, J. Am. Chem. Soc., 126, 14722, 10.1021/ja045612o