The role of deep fluid in the formation of organic-rich source rocks☆
Tài liệu tham khảo
Hazen, 2013, Why deep carbon?, Rev. Mineral. Geochem., 75, 1, 10.2138/rmg.2013.75.1
Jin, 2002, Multi-origin alkanes related to CO2-rich, mantle-derived fluid in Dongying sag, Bohai Bay Basin, Chin. Sci. Bull., 47, 1756, 10.1007/BF03183323
Jin, 2004, A preliminary study of mantle-derived fluids and their effects on oil/gas generation in sedimentary basins, J. Petrol. Sci. Eng., 41, 45, 10.1016/S0920-4105(03)00142-6
Liu, 2016, Abnormal carbon and hydrogen isotopes of alkane gases from the Qingshen gas field, Songliao Basin, China, suggesting abiogenic alkanes?, J. Asian Earth Sci., 115, 285, 10.1016/j.jseaes.2015.10.005
Liu, 2017, Effects of deep CO2 on petroleum and thermal alteration: the case of the Huangqiao oil and gas field, Chem. Geol., 469, 214, 10.1016/j.chemgeo.2017.06.031
Zhu, 2010, Hydrothermal recrystallization of the lower ordovician dolomite and its significance to reservoir in northern Tarim Basin, Sci. China Earth Sci. (Sci. China Ser. D), 53, 368, 10.1007/s11430-010-0028-9
Zhu, 2017, Effects of deep fluids on hydrocarbon generation and accumulation in Chinese Petroliferous Basins, Acta Geol. Sin., 91, 301, 10.1111/1755-6724.13079
Little, 1997, Silurian hydrothermal vent community from the southern Urals, Russia, Nature, 385, 146, 10.1038/385146a0
Verati, 1999, Evidence of bacterial activity from micrometer-scale layer analyses of black smoker sulfide structures (Pito seamount site, Easter microplate), Chem. Geol., 158, 257, 10.1016/S0009-2541(99)00054-6
Little, 1999, Early jurassic hydrothermal vent community from the franciscan complex, San Rafael Mountains, California, Geology, 27, 167, 10.1130/0091-7613(1999)027<0167:EJHVCF>2.3.CO;2
Rasmussen, 2000, Filamentous microfossils in a 3235 Ma old volcanogenic massive sulphide deposit, Nature, 405, 676, 10.1038/35015063
You, 1998, Evolution of an active seafloor massive sulphide deposit, Nature, 394, 668, 10.1038/29279
Han, 2010
Tao, 2012, First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge, Geology, 40, 47, 10.1130/G32389.1
Furnes, 2002, Identifying bio-interaction with basaltic glass in oceanic crust and implications for estimating the depth of the oceanic biosphere: a review, Geol. Soc. London Spec. Publ., 202, 407, 10.1144/GSL.SP.2002.202.01.21
Hou, 1999, The proof of mantle-source helium from the helium isotopic composition of hydrothermal mineral-formation system in Okinawa trough, Sci. China (Ser. D), 29, 155
Fouquet, 1993, Metallogenesis in back-arc environments: the Lau Basin example, Econ. Geol., 88, 2154, 10.2113/gsecongeo.88.8.2154
Wu, 2001, The study of petromineralogy and geochemistry in Mariana trough hydrothermal zone, J. Oceanogr. Huanghai Bohai Seas, 19, 22
Halbach, 1999, Diffuse hydrothermal activity, biological communities, and mineral formation in the North Fiji Basin(SW Pacific): preliminary results of the R/V SONNE cruise SO-134, InterRidge News, 8, 38
Song, 2007, The effects of Huimin sag igneous rocks on the formation of hydrocarbon reservoir, J. China Univ. Petrol. (Ed. Nat. Sci.), 31, 1
Chu, 2016, The influence of hydrothermal activity on the formation of source rock in Yuertusi formation Dongergou profile, Sini. Acta Sedimentol., 34, 803
Gao, 2009, The influence of volcanic eruption on the formation of source rock: taking Kuli formation in Labudalin Basin as a sample, Acta Petrol. Sin., 25, 2671
Dawson, 2000, Shale microfacies: Eagle Ford Group (Cenomanian-Turonian) north-central Texas outcrops and surface equivalents, AAPG Bull., 84, 607
Gaibor, 2008, Hydrocarbon source potential of the santiaogo formation, Oriente Basin, SE of Ecuador, J. S. Am. Earth Sci., 25, 145, 10.1016/j.jsames.2007.07.002
Parrish, 2013
Javoy, 1982, Carbon geodynamic cycle, Nature, 300, 171, 10.1038/300171a0
Dasgupta, 2010, The deep carbon cycle and melting in Earth's interior, Earth Planet Sci. Lett., 298, 1, 10.1016/j.epsl.2010.06.039
Dasgupta, 2013, Ingassing, storage, and outgassing of terrestrial carbon through geologic time, Rev. Mineral. Geochem., 75, 183, 10.2138/rmg.2013.75.7
Kerrick, 1998, Subduction of ophicarbonates and recycling of CO2 and H2O, Geology, 26, 375, 10.1130/0091-7613(1998)026<0375:SOOARO>2.3.CO;2
Frezzotti, 2014, Diamond formation by carbon saturation in C-O-H fluids during cold subduction of oceanic lithosphere, Geochem. Cosmochim. Acta, 143, 68, 10.1016/j.gca.2013.12.022
Dasgupta, 2004, Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions, Earth Planet Sci. Lett., 227, 73, 10.1016/j.epsl.2004.08.004
Frost, 2008, The redox state of Earth's mantle, Annu. Rev. Earth Planet Sci., 36, 389, 10.1146/annurev.earth.36.031207.124322
Berner, 2003, The long-term carbon cycle, fossil fuels and atmospheric composition, Nature, 426, 323, 10.1038/nature02131
Zhang, 2017, The problems of deep carbon cycle in subduction zone, Bull. China Soc. Mineral Petrol. Geochem., 36, 185
Martin, 1990, Iron in antarctic waters, Nature, 345, 156, 10.1038/345156a0
Martin, 1988, Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic, Nature, 331, 341, 10.1038/331341a0
Price, 1991, Iron and nitrogen nutrition of equatorial Pacific plankton, Deep-Sea Res., 38, 1361, 10.1016/0198-0149(91)90011-4
Price, 1991, Colimitation of phytoplankton growth by Ni and nitrogen, Limnol. Oceanogr., 36, 1071, 10.4319/lo.1991.36.6.1071
Morel, 1991, Limitation of productivity by trace metals in the sea, Limnol. Oceanogr., 36, 1742, 10.4319/lo.1991.36.8.1742
Martin, 1989, Vertex: phytoplankton/iron studies in the Gulf of Alaska, Deep-Sea Res., 36, 649, 10.1016/0198-0149(89)90144-1
Price, 1994, The equatorial Pacific Ocean: grazer-controlled phytoplankton populations in an iron-limited ecosystem, Limnol. Oceanogr., 39, 520, 10.4319/lo.1994.39.3.0520
Gerringa, 2000, A comparison of iron limitation of phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA, Mar. Chem., 68, 335, 10.1016/S0304-4203(99)00092-4
Browning, 2014, Strong responses of Southern Ocean phytoplankton communities to volcanic ash, Res. Lett., 41, 2851, 10.1002/2014GL059364
Gran, 1931, On the conditions for the production of plankton in the sea, Rapp. Proc. Verb. Reun. Cons. Int. Explor. Mer., 75, 37
Hoffmann, 2012, Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi, Mar. Chem., 132–133, 28, 10.1016/j.marchem.2012.02.003
Taylor, 1997, Microbiology and ecology of filamentous sulfur formation, Science, 277, 1483, 10.1126/science.277.5331.1483
Blank, 1993, The concentration isotopic composition of carbon in basaltic glasses from the Juan de Fuca Ridge, Geochem. Cosmochim. Acta, 57, 875, 10.1016/0016-7037(93)90175-V
Calvert, 1987, Oceanographic controls on the accumulation of organic matter in marine sediments, Geol. Soc. London, Spec. Publ., 26, 1, 10.1144/GSL.SP.1987.026.01.08
Stein, 1986, Organic carbon and sedimentation rate-further evidence for anoxic deep-water conditions in the Cenomania/Turonian Atlantic ocean, Mar. Geol., 72, 199, 10.1016/0025-3227(86)90119-2
Kartz, 1990, Controls on distribution of lacustrine source rocks through time and space, 61
Ye, 1993, 293
Jin, 2006, The problems and relative progress of source rock sediments in Chinese salted lake basin, Geol. J. China Univ., 12, 483
Demaison, 1979, Environment and oil source bed genesis, Org. Geochem., 2, 9, 10.1016/0146-6380(80)90017-0
Van Cappellen, 1994, Benthic phosphorus regeneration, net primary production and ocean anoxia: a model of coupled marine biogeochemical cycles of carbon and phosphorus, Paleoceanography, 9, 677, 10.1029/94PA01455
Zhang, 2017, Redoc chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery, Proc. Natl. Acad. Sci. Unit. States Am., 114, 1806, 10.1073/pnas.1610931114
Shen, 2011, Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction, Nat. Commun., 2, 1