The role of deep fluid in the formation of organic-rich source rocks☆

Journal of Natural Gas Geoscience - Tập 3 - Trang 171-180 - 2018
Jiayi Liu1,2, Quanyou Liu1,2, Dongya Zhu1,2, Qingqiang Meng1,2, Wenhui Liu2,3, Dengfeng Qiu1,2, Zhenkai Huang1,2
1State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China
2Research Institute of Petroleum Exploration and Production, SINOPEC, Beijing, 100083, China
3Northwest University, Xi'an 710069, China

Tài liệu tham khảo

Hazen, 2013, Why deep carbon?, Rev. Mineral. Geochem., 75, 1, 10.2138/rmg.2013.75.1 Jin, 2002, Multi-origin alkanes related to CO2-rich, mantle-derived fluid in Dongying sag, Bohai Bay Basin, Chin. Sci. Bull., 47, 1756, 10.1007/BF03183323 Jin, 2004, A preliminary study of mantle-derived fluids and their effects on oil/gas generation in sedimentary basins, J. Petrol. Sci. Eng., 41, 45, 10.1016/S0920-4105(03)00142-6 Liu, 2016, Abnormal carbon and hydrogen isotopes of alkane gases from the Qingshen gas field, Songliao Basin, China, suggesting abiogenic alkanes?, J. Asian Earth Sci., 115, 285, 10.1016/j.jseaes.2015.10.005 Liu, 2017, Effects of deep CO2 on petroleum and thermal alteration: the case of the Huangqiao oil and gas field, Chem. Geol., 469, 214, 10.1016/j.chemgeo.2017.06.031 Zhu, 2010, Hydrothermal recrystallization of the lower ordovician dolomite and its significance to reservoir in northern Tarim Basin, Sci. China Earth Sci. (Sci. China Ser. D), 53, 368, 10.1007/s11430-010-0028-9 Zhu, 2017, Effects of deep fluids on hydrocarbon generation and accumulation in Chinese Petroliferous Basins, Acta Geol. Sin., 91, 301, 10.1111/1755-6724.13079 Little, 1997, Silurian hydrothermal vent community from the southern Urals, Russia, Nature, 385, 146, 10.1038/385146a0 Verati, 1999, Evidence of bacterial activity from micrometer-scale layer analyses of black smoker sulfide structures (Pito seamount site, Easter microplate), Chem. Geol., 158, 257, 10.1016/S0009-2541(99)00054-6 Little, 1999, Early jurassic hydrothermal vent community from the franciscan complex, San Rafael Mountains, California, Geology, 27, 167, 10.1130/0091-7613(1999)027<0167:EJHVCF>2.3.CO;2 Rasmussen, 2000, Filamentous microfossils in a 3235 Ma old volcanogenic massive sulphide deposit, Nature, 405, 676, 10.1038/35015063 You, 1998, Evolution of an active seafloor massive sulphide deposit, Nature, 394, 668, 10.1038/29279 Han, 2010 Tao, 2012, First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge, Geology, 40, 47, 10.1130/G32389.1 Furnes, 2002, Identifying bio-interaction with basaltic glass in oceanic crust and implications for estimating the depth of the oceanic biosphere: a review, Geol. Soc. London Spec. Publ., 202, 407, 10.1144/GSL.SP.2002.202.01.21 Hou, 1999, The proof of mantle-source helium from the helium isotopic composition of hydrothermal mineral-formation system in Okinawa trough, Sci. China (Ser. D), 29, 155 Fouquet, 1993, Metallogenesis in back-arc environments: the Lau Basin example, Econ. Geol., 88, 2154, 10.2113/gsecongeo.88.8.2154 Wu, 2001, The study of petromineralogy and geochemistry in Mariana trough hydrothermal zone, J. Oceanogr. Huanghai Bohai Seas, 19, 22 Halbach, 1999, Diffuse hydrothermal activity, biological communities, and mineral formation in the North Fiji Basin(SW Pacific): preliminary results of the R/V SONNE cruise SO-134, InterRidge News, 8, 38 Song, 2007, The effects of Huimin sag igneous rocks on the formation of hydrocarbon reservoir, J. China Univ. Petrol. (Ed. Nat. Sci.), 31, 1 Chu, 2016, The influence of hydrothermal activity on the formation of source rock in Yuertusi formation Dongergou profile, Sini. Acta Sedimentol., 34, 803 Gao, 2009, The influence of volcanic eruption on the formation of source rock: taking Kuli formation in Labudalin Basin as a sample, Acta Petrol. Sin., 25, 2671 Dawson, 2000, Shale microfacies: Eagle Ford Group (Cenomanian-Turonian) north-central Texas outcrops and surface equivalents, AAPG Bull., 84, 607 Gaibor, 2008, Hydrocarbon source potential of the santiaogo formation, Oriente Basin, SE of Ecuador, J. S. Am. Earth Sci., 25, 145, 10.1016/j.jsames.2007.07.002 Parrish, 2013 Javoy, 1982, Carbon geodynamic cycle, Nature, 300, 171, 10.1038/300171a0 Dasgupta, 2010, The deep carbon cycle and melting in Earth's interior, Earth Planet Sci. Lett., 298, 1, 10.1016/j.epsl.2010.06.039 Dasgupta, 2013, Ingassing, storage, and outgassing of terrestrial carbon through geologic time, Rev. Mineral. Geochem., 75, 183, 10.2138/rmg.2013.75.7 Kerrick, 1998, Subduction of ophicarbonates and recycling of CO2 and H2O, Geology, 26, 375, 10.1130/0091-7613(1998)026<0375:SOOARO>2.3.CO;2 Frezzotti, 2014, Diamond formation by carbon saturation in C-O-H fluids during cold subduction of oceanic lithosphere, Geochem. Cosmochim. Acta, 143, 68, 10.1016/j.gca.2013.12.022 Dasgupta, 2004, Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions, Earth Planet Sci. Lett., 227, 73, 10.1016/j.epsl.2004.08.004 Frost, 2008, The redox state of Earth's mantle, Annu. Rev. Earth Planet Sci., 36, 389, 10.1146/annurev.earth.36.031207.124322 Berner, 2003, The long-term carbon cycle, fossil fuels and atmospheric composition, Nature, 426, 323, 10.1038/nature02131 Zhang, 2017, The problems of deep carbon cycle in subduction zone, Bull. China Soc. Mineral Petrol. Geochem., 36, 185 Martin, 1990, Iron in antarctic waters, Nature, 345, 156, 10.1038/345156a0 Martin, 1988, Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic, Nature, 331, 341, 10.1038/331341a0 Price, 1991, Iron and nitrogen nutrition of equatorial Pacific plankton, Deep-Sea Res., 38, 1361, 10.1016/0198-0149(91)90011-4 Price, 1991, Colimitation of phytoplankton growth by Ni and nitrogen, Limnol. Oceanogr., 36, 1071, 10.4319/lo.1991.36.6.1071 Morel, 1991, Limitation of productivity by trace metals in the sea, Limnol. Oceanogr., 36, 1742, 10.4319/lo.1991.36.8.1742 Martin, 1989, Vertex: phytoplankton/iron studies in the Gulf of Alaska, Deep-Sea Res., 36, 649, 10.1016/0198-0149(89)90144-1 Price, 1994, The equatorial Pacific Ocean: grazer-controlled phytoplankton populations in an iron-limited ecosystem, Limnol. Oceanogr., 39, 520, 10.4319/lo.1994.39.3.0520 Gerringa, 2000, A comparison of iron limitation of phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA, Mar. Chem., 68, 335, 10.1016/S0304-4203(99)00092-4 Browning, 2014, Strong responses of Southern Ocean phytoplankton communities to volcanic ash, Res. Lett., 41, 2851, 10.1002/2014GL059364 Gran, 1931, On the conditions for the production of plankton in the sea, Rapp. Proc. Verb. Reun. Cons. Int. Explor. Mer., 75, 37 Hoffmann, 2012, Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi, Mar. Chem., 132–133, 28, 10.1016/j.marchem.2012.02.003 Taylor, 1997, Microbiology and ecology of filamentous sulfur formation, Science, 277, 1483, 10.1126/science.277.5331.1483 Blank, 1993, The concentration isotopic composition of carbon in basaltic glasses from the Juan de Fuca Ridge, Geochem. Cosmochim. Acta, 57, 875, 10.1016/0016-7037(93)90175-V Calvert, 1987, Oceanographic controls on the accumulation of organic matter in marine sediments, Geol. Soc. London, Spec. Publ., 26, 1, 10.1144/GSL.SP.1987.026.01.08 Stein, 1986, Organic carbon and sedimentation rate-further evidence for anoxic deep-water conditions in the Cenomania/Turonian Atlantic ocean, Mar. Geol., 72, 199, 10.1016/0025-3227(86)90119-2 Kartz, 1990, Controls on distribution of lacustrine source rocks through time and space, 61 Ye, 1993, 293 Jin, 2006, The problems and relative progress of source rock sediments in Chinese salted lake basin, Geol. J. China Univ., 12, 483 Demaison, 1979, Environment and oil source bed genesis, Org. Geochem., 2, 9, 10.1016/0146-6380(80)90017-0 Van Cappellen, 1994, Benthic phosphorus regeneration, net primary production and ocean anoxia: a model of coupled marine biogeochemical cycles of carbon and phosphorus, Paleoceanography, 9, 677, 10.1029/94PA01455 Zhang, 2017, Redoc chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery, Proc. Natl. Acad. Sci. Unit. States Am., 114, 1806, 10.1073/pnas.1610931114 Shen, 2011, Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction, Nat. Commun., 2, 1