The role of cocrystals in pharmaceutical science

Drug Discovery Today - Tập 13 Số 9-10 - Trang 440-446 - 2008
Ning Shan1, Michael J. Zaworotko
1Thar Pharmaceuticals Inc., 3802 Spectrum Boulevard, Tampa, FL 33612, USA. [email protected]

Tóm tắt

Từ khóa


Tài liệu tham khảo

Byrn, 1999

Haleblian, 1975, Characterization of habits and crystalline modification of solids and their pharmaceutical applications, J. Pharm. Sci., 64, 1269, 10.1002/jps.2600640805

Wöhler, 1844, Untersuchungen über das Chinon, Annalen, 51, 153, 10.1002/jlac.18440510202

Ling, 1893, Halogen derivatives of quinone. Part III. Derivatives of quinhydrone, J. Chem. Soc. Trans., 63, 1314, 10.1039/CT8936301314

Anderson, 1937, Structure of organic molecular compounds, Nature, 140, 583, 10.1038/140583b0

Etter, 1991, Hydrogen bonds as design elements in organic chemistry, J. Phys. Chem., 95, 4601, 10.1021/j100165a007

Zerkowski, 1994, Design of organic structures in the solid state: molecular tapes based on the network of hydrogen bonds present in the cyanuric acid·melamine complex, J. Am. Chem. Soc., 116, 2382, 10.1021/ja00085a018

Pepinsky, 1955, Crystal engineering—a new concept in crystallography, Phys. Rev., 100, 971

Schmidt, 1971, Photodimerization in the solid state, Pure Appl. Chem., 27, 647, 10.1351/pac197127040647

Desiraju, 1989

Moulton, 2001, From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids, Chem. Rev., 101, 1629, 10.1021/cr9900432

Desiraju, 1995, Supramolecular synthons in crystal engineering—a new organic synthesis, Angew. Chem. Int. Ed. Engl., 34, 2311, 10.1002/anie.199523111

Allen, 1993, Chem. Des. Automat. News, 8, 31

Almarsson, 2004, Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical cocrystals represent a new path to improved medicines?, Chem. Commun., 1889, 10.1039/b402150a

Vishweshwar, 2006, Pharmaceutical cocrystals, J. Pharm. Sci., 95, 499, 10.1002/jps.20578

Blagden, 2007, Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates, Adv. Drug Del. Rev., 59, 617, 10.1016/j.addr.2007.05.011

Shan, 2002, Mechanochemistry and cocrystal formation: effect of solvent on reaction kinetics, Chem. Commun., 2372, 10.1039/b207369m

Trask, 2005, Crystal engineering of organic cocrystals by the solid-state grinding approach, Top. Curr. Chem., 254, 41, 10.1007/b100995

Friscic, 2006, Screening for inclusion compounds and systematic construction of three-component solids by liquid-assisted grinding, Angew. Chem. Int. Ed., 45, 7546, 10.1002/anie.200603235

Remenar, 2003, Crystal engineering of novel cocrystals of a Triazole drug with 1,4-dicarboxylic acids, J. Am. Chem. Soc., 125, 8456, 10.1021/ja035776p

Childs, 2004, Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids, J. Am. Chem. Soc., 126, 13335, 10.1021/ja048114o

Morissette, 2004, High-throughput crystallization: polymorphs, salts, cocrystals and solvates of pharmaceutical solids, Adv. Drug Del. Rev., 56, 275, 10.1016/j.addr.2003.10.020

McNamara, 2006, Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API, Pharma. Res., 23, 1888, 10.1007/s11095-006-9032-3

Childs, 2007, The salt-cocrystal continuum: the influence of crystal structure on ionization state, Mol. Pharma., 4, 323, 10.1021/mp0601345

Remenar, 2007, Celecoxib:nicotinamide dissociation: using excipients to capture the cocrystal's potential, Mol. Pharma., 4, 386, 10.1021/mp0700108

Caira, 2007, Sulfa drugs as model cocrystal formers, Mol. Pharma., 4, 310, 10.1021/mp070003j

Hickey, 2007, Performance comparison of a cocrystal of carbamazepine with marketed product, Eur. J. Pharma. Biopharma., 67, 112, 10.1016/j.ejpb.2006.12.016

Zerkowski, 1992, Solid-state structures of ‘Rosette’ and ‘Crinkled Tape’ motifs derived from the cyanuric acidmelamine lattice, J. Am. Chem. Soc., 114, 5473, 10.1021/ja00039a096

Chen, 2007, Development of a pharmaceutical cocrystal of a monophosphate salt with phosphoric acid, Chem. Commun., 419, 10.1039/B612353H

Remenar, J.F. et al. Novel crystalline forms of conazoles and methods of making and using the same. USP20050070551

Zegarac, M. et al. Pharmaceutically acceptable cocrystalline forms of sildenafil. WO 2007/080362 A1

Ranganathan, 1999, Hydrothermal synthesis of organic channel structures: 1:1 hydrogen-bonded adducts of melamine with cyanuric and trithiocyanuric acids, J. Am. Chem. Soc., 121, 1752, 10.1021/ja983928o

Puschner, 2007, Assessment of melamine and cyanuric acid toxicity in cats, J. Vet. Diagn. Invest., 19, 616, 10.1177/104063870701900602

Jones, 2006, Pharmaceutical cocrystals: an emerging approach to physical property enhancement, MRS Bull., 31, 875, 10.1557/mrs2006.206

Trask, 2006, Physical stability enhancement of theophylline via cocrystallization, Int. J. Pharm., 320, 114, 10.1016/j.ijpharm.2006.04.018

Trask, 2007, An overview of pharmaceutical cocrystals as intellectual property, Mol. Pharma., 4, 301, 10.1021/mp070001z

Desiraju, 2003, Crystal and cocrystal, Cryst. Eng. Commun., 5, 466, 10.1039/b313552g

Dunitz, 2003, Crystal and cocrystal: a second opinion, Cryst. Eng. Commun., 4, 506, 10.1039/b315687g

Bond, 2007, What is a cocrystal?, Cryst. Eng. Commun., 9, 833, 10.1039/b708112j

Ulrich, 2004, Is melt crystallization a green technology?, Cryst. Growth Des., 4, 879, 10.1021/cg0300432

Hoogsteen, 1959, The structure of crystals containing a hydrogen-bonded complex of 1-methylthymine and 9-methyladenine, Acta Crystallogr., 12, 822, 10.1107/S0365110X59002389

Hoogsteen, 1963, Crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine, Acta Crystallogr., 16, 907, 10.1107/S0365110X63002437

O’Brien, 1967, Crystal structures of two complexes containing guanine and cytosine derivatives, Acta Crystallogr., 23, 92, 10.1107/S0365110X67002191

Sivakova, 2005, Nucleobases as supramolecular motifs, Chem. Soc. Rev., 34, 9, 10.1039/b304608g

Bis, 2007, Hierarchy of supramolecular synthons: persistent hydroxyl-pyridine hydrogen bonds in cocrystals that contain a cyano acceptor, Mol. Pharma., 4, 401, 10.1021/mp070012s

Zaworotko, 2007, Molecules to crystals, crystals to molecules … and back again?, Cryst. Growth Des., 7, 4, 10.1021/cg0680172

Vishweshwar, 2005, Crystal engineering of pharmaceutical cocrystals from polymorphic active pharmaceutical ingredients, Chem. Commun., 4601, 10.1039/b501304f

Fleischman, 2003, Crystal engineering of the composition of pharmaceutical phases. 2. Multiple component crystalline solids involving carbamazepine, Cryst. Growth Des., 3, 909, 10.1021/cg034035x

Aakeröy, 2005, Building cocrystals with molecular sense and supramolecular sensibility, Cryst. Eng. Commun., 7, 439, 10.1039/b505883j

Babu, 2007, Amide N-oxide heterosynthon and amide dimer homosynthon in cocrystals of carboxamide drugs and pyridine N-oxides, Mol. Pharma., 4, 417, 10.1021/mp070014c

Oswald, 2004, Crystallogr. Rev., 10, 57, 10.1080/08893110410001664855

Braga, 2005, Making crystals from crystals: a green route to crystal engineering and polymorphism, Chem. Commun., 3635, 10.1039/b504668h

Bucar, 2007, Cocrystals of caffeine and hydroxy-2-naphthoic acids: unusual formation of the carboxylic acid dimer in the presence of a heterosynthon, Mol. Pharma., 4, 339, 10.1021/mp070004b

Cannon, 2002, Noncovalent derivatization: green chemistry applications of crystal engineering, Cryst. Growth Des., 2, 255, 10.1021/cg0255218

MacGillivray, 2000, Supramolecular control of reactivity in the solid state using linear molecular templates, J. Am. Chem. Soc., 122, 7817, 10.1021/ja001239i

Toh, 2005, Topochemical photodimerization in the coordination polymer [{(CF3CO2)(mu-O2CCH3)Zn)(2)(mu-bpe)(2)](n) through single-crystal to single-crystal transformation, Angew. Chem. Int. Ed., 44, 2237, 10.1002/anie.200462673

Cheney, 2007, The role of cocrystals in solid-state synthesis: cocrystal controlled solid-state synthesis of imides, Cryst. Growth Des., 7, 616, 10.1021/cg0701729

Higuchi, 1954, Study of possible complex formation between macro-molecules and certain pharmaceuticals I. Polyvinylpyrrolidone (PVP) with sulfathiazole, procaine hydrochloride, sodium salicylate, benzylpenicillin, chloramphenicol, mandelic acid, caffeine, theophylline, and cortisone, J. Am. Pharm. Assoc., 43, 393, 10.1002/jps.3030430704

Higuchi, 1954, Study of possible complexformation between macro-molecules and certain pharmaceuticals II. Polyvinylpyrrolidone with paminobenzoic acid (PABA), aminopyrine, benzoic acid, salicylic acid, p-hydroxybenzoic acid, hydroxybenzoic acid, citric acid, and phenobarbital, J. Am. Pharm. Assoc., 43, 398, 10.1002/jps.3030430705

Lehn, 1995

Porter, 2008, Polymorphism in carbamazepine cocrystals, Cryst. Growth Des., 8, 14, 10.1021/cg701022e