The role of carbonate ions in pyrite oxidation in aqueous systems

Geochimica et Cosmochimica Acta - Tập 74 Số 6 - Trang 1777-1789 - 2010
Cláudia L. Caldeira1,2, Virgínia S.T. Ciminelli1,2, K. Osseo‐Asare3,1
1National Institute of Science and Technology: INCT-Acqua, Brazil
2NovaS Group, Dept. of Metallurgical and Materials Engineering, UFMG, Av. Antonio Carlos 6627, Engineering School, Bl2, 31270-901 Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
3Dept. of Materials Science and Engineering and Dept. of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baes, 1989, Diffuse reflectance and transmission Fourier transform infrared (DRIFT) spectroscopy of humic and fulvic acids, Soil Sci. Soc. Am. J., 53, 695, 10.2136/sssaj1989.03615995005300030008x

Bailey, 1976, Decomposition of pyrite in acids by pressure leaching and anodization: the case for electrochemical mechanism, Can. Metall. Q., 15, 333, 10.1179/cmq.1976.15.4.333

Bargar, 2005, ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite, Geochim. Cosmochim. Acta, 69, 1527, 10.1016/j.gca.2004.08.002

Borda, 2003, A mechanism for the production of hydroxyl radical at surface defect sites on pyrite, Geochim. Cosmochim. Acta, 67, 935, 10.1016/S0016-7037(02)01222-X

Borda, 2003, A vibrational spectroscopic study of the oxidation of pyrite by ferric iron, Am. Mineral., 88, 1318, 10.2138/am-2003-8-914

Borda, 2004, A vibrational spectroscopic study of the oxidation of pyrite by molecular oxygen, Geochim. Cosmochim. Acta, 68, 1807, 10.1016/j.gca.2003.10.022

Bruno, 1992, On the influence of carbonate in mineral dissolution: I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T=25°C, Geochim. Cosmochim. Acta, 56, 1139, 10.1016/0016-7037(92)90051-J

Bruno, 1992, On the influence of carbonate in mineral dissolutuion: II. The solubility of FeCO3(s) at 25°C and 1 atm total pressure, Geochim. Cosmochim. Acta, 56, 1149, 10.1016/0016-7037(92)90052-K

Bruno, 2000, Reply to W. Hummel’s comment on and correction to “On the influence of carbonate in mineral dissolution: 1. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T=25°C” by J. Bruno, W. Stumm, P. Wersin, and F. Brandberg, Geochim. Cosmochim. Acta, 64, 2173, 10.1016/S0016-7037(00)00328-8

Burkin, A. R. and Edwards, A. M. (1963) The formation of insoluble iron oxide coatings during the alkali pressure leaching of pyrite. In 6th International Congress of Mineral Processing. Cannes. pp. 159–169.

Busca, 1980, Infrared study of methanol, formaldehyde, and formic acid adsorbed on hematite, J. Catal., 66, 155, 10.1016/0021-9517(80)90017-2

Caldeira, 2003, Pyrite oxidation in alkaline solutions: nature of the product layer, Inter. J. Miner. Process., 72, 373, 10.1016/S0301-7516(03)00112-1

Chivot (2004) Thermodynamique des produits de corrosion, ANDRA 236 – 141 p. ISBN 2-9510108-6-9; (in French).

Ciminelli, V. S. T. (1987). Oxidation of pyrite in alkaline solutions and heterogeneous equilibria of sulfur- and arsenic-containing minerals in cyanide solutions. Ph. D thesis, The Pennsylvania State University.

Ciminelli, 1995, Kinetics of pyrite oxidation in sodium carbonate solutions, Metall. Mater. Trans. B, 26B, 209, 10.1007/BF02660961

Ciminelli, 1995, Kinetics of pyrite oxidation in sodium hydroxide solutions, Metall. Mater. Trans. B, 26B, 677, 10.1007/BF02651713

Cornell, 1996

Crundwell, 1988, The influence of electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals, Hydrometallurgy, 21, 155, 10.1016/0304-386X(88)90003-5

Detournay, 1975, The region of stability of green rust II in the electrochemical potential-pH equilibrium diagram of iron in sulphate medium, Corros. Sci., 15, 295, 10.1016/S0010-938X(75)80011-4

Descostes, 2002, Effect of carbonate ions on pyrite (FeS2) dissolution, Bull. Soc. Géol. France, 173, 265, 10.2113/173.3.265

Drissi, 1995, The Preparation and thermodynamic properties of Fe(II)–Fe(III) hydroxide-carbonate (green-rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media, Corros. Sci., 37, 2025, 10.1016/0010-938X(95)00096-3

Evangelou, 1994, Infrared spectroscopy evidence of an iron(II)-carbonate complex on the surface of pyrite, Spectrochim. Acta, 50A, 1133

Evangelou, 1995

Evangelou, 1998, Potential role of bicarbonate during pyrite oxidation, Environ. Sci. Technol., 32, 2084, 10.1021/es970829m

Hiemstra, 2004, Surface complexation of carbonate on goethite: IR spectroscopy, structure and charge distribution, J. Colloid Interface Sci., 278, 282, 10.1016/j.jcis.2004.06.014

Holmes, 2000, The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study, Geochim. Cosmochim. Acta, 64, 263, 10.1016/S0016-7037(99)00296-3

Hood, T. A. (1991) The kinetics of pyrite oxidation in alkaline systems. Ph. D. thesis, University of Miami.

HSC Chemistry, (2007) Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database. Ver. 6.12, Outokumpu Research Oy, Piori, Finland.

Hummel, 2000, Comment on “On the influence of carbonate in mineral dissolution: 1. the thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T=25°C” by J. Bruno, W. Stumm, P. Wersin, and F. Brandberg, Geochim. Cosmochim. Acta, 64, 2167, 10.1016/S0016-7037(00)00327-6

Jolivet, 1982, Infrared spectra of cerium and thorium pentacarbonate complexes, J. Mol. Struct., 79, 403, 10.1016/0022-2860(82)85091-6

King, 1998, Role of carbonate speciation on the oxidation rate of Fe(II) in aquatic systems, Environ. Sci. Technol., 32, 2997, 10.1021/es980206o

Kolthoff, 1952

Lefticariu, 2007, Oxygen isotope partitioning during oxidation of pyrite by H2O2 and its dependence on temperature, Geochim. Cosmochim. Acta, 71, 5072, 10.1016/j.gca.2007.08.022

Legrand, 2000, Study of oxidation products formed on iron in solutions containing bicarbonate/carbonate, Electrochim. Acta, 46, 111, 10.1016/S0013-4686(00)00563-6

Legrand, 2001, Electrochemical formation of a new Fe(II)–Fe(III) hydroxy-carbonate green rust: characterisation and mophology, Electrochim. Acta, 46, 1815, 10.1016/S0013-4686(00)00728-3

Lorenzelli, 1982, Infrared studies of the diatomic molecules O2, N2, NO and H2 adsorbed on Fe2O3, J. Mol. Struct., 80, 181, 10.1016/0022-2860(82)87227-X

Lowson, 1982, Aqueous oxidation of pyrite by molecular oxygen, Chem. Rev., 82, 461, 10.1021/cr00051a001

Luther, 1987, Pyrite oxidation and reduction: molecular orbital theory considerations, Geochim. Cosmochim. Acta, 51, 3193, 10.1016/0016-7037(87)90127-X

Luther, 1992, Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively, Mar. Chem., 40, 81, 10.1016/0304-4203(92)90049-G

Majzlan, 2004, Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (Fe(OH)3), schwerthmannite (Fe(OH)3/4 (SO4)1/8), and e-Fe2O3, Geochim. Cosmochim. Acta, 68, 1049, 10.1016/S0016-7037(03)00371-5

Mazzetti, 2002, Raman spectra and thermal transformations of ferrihydrite and schwertmannite, J. Raman Spectrosc., 33, 104, 10.1002/jrs.830

Millero, 1987, The oxidation-kinetics of Fe(II) in seawater, Geochim. Cosmochim. Acta, 51, 793, 10.1016/0016-7037(87)90093-7

Millero, 1992, Ionic interactions of divalent metals in natural-waters, Mar. Chem., 40, 19, 10.1016/0304-4203(92)90046-D

Mishra, 1988, Aspects of the interfacial electrochemistry of semiconductor pyrite (FeS2), J. Electrochem. Soc., 135, 2502, 10.1149/1.2095366

Moses, 1987, Aqueous pyrite oxidation by dissolved oxygen and by ferric iron, Geochim. Cosmochim. Acta, 51, 1561, 10.1016/0016-7037(87)90337-1

Moses, 1991, Pyrite oxidation at circumneutral pH, Geochim. Cosmochim. Acta, 55, 471, 10.1016/0016-7037(91)90005-P

Murphy, 2009, Surface reactivity of pyrite and related sulfides, Surf. Sci. Rep., 64, 1, 10.1016/j.surfrep.2008.09.002

Nakamoto, 1997

Nicholson, 1988, Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics, Geochim. Cosmochim. Acta, 52, 1077, 10.1016/0016-7037(88)90262-1

Nicholson, 1990, Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings, Geochim. Cosmochim. Acta, 54, 395, 10.1016/0016-7037(90)90328-I

Osseo-Asare, 1993, Oxidants and catalysts in the aqueous dissolution of metal sulfides: influence of electronic structure on reactivity, 173

Pham, 2008, Oxygenation of Fe(II) in natural waters revisited: kinetic modeling approaches, rate constant estimation and the importance of various reaction pathways, Geochim. Cosmochim. Acta, 72, 3616, 10.1016/j.gca.2008.05.032

Reedy, 1991, A vibrational spectroscopic 18O tracer study of pyrite oxidation, Geochim. Cosmochim. Acta, 55, 1609, 10.1016/0016-7037(91)90132-O

Rimstidt, 2003, Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism, Geochim. Cosmochim. Acta, 67, 873, 10.1016/S0016-7037(02)01165-1

Singer, 1970, Acidic mine drainage: the rate-determining step, Science, 167, 1121, 10.1126/science.167.3921.1121

Smith, E. E. and Shumate, K. S., 1970. In Sulfide to Sulfate Reaction Mechanism; Water Pollut. Control Res. Ser. Rept. 14010 FPS 02170, US Dept. Interior, 1–113.

Stenhouse, 1952, The aqueous oxidation of pyrite, Can. Min. Metall. Bull., 49

Taylor, 1984, Stable isotope geochemistry of acid mine drainage: experimental oxidation of pyrite, Geochim. Cosmochim. Acta, 48, 2669, 10.1016/0016-7037(84)90315-6

Tributsch, 1986, vol. 17, 303

Usher, 2004, Origin of oxygen in sulfate during pyrite oxidation with water and dissolved oxygen: an in situ total reflectance infrared-spectroscopy isotope study, Environ. Sci. Technol., 38, 5604, 10.1021/es0494003

Watanabe, 1994, Sulfate ions on the surface of maghemite and hematite, Solid State Ionics, 69, 29, 10.1016/0167-2738(94)90446-4

Wei, 1997, Semiconductor electrochemistry of particulate pyrite: mechanisms and products of dissolution, J. Electrochem. Soc., 144, 546, 10.1149/1.1837446

Wijnja, 2001, Carbonate adsorption mechanism on goethite studied with ATR FTIR, DRIFT and proton coadsorption measurements, Soil Sci. Soc. Am. J., 65, 324, 10.2136/sssaj2001.652324x