The role of ballistic erosion and sedimentation in lunar stratigraphy

Reviews of Geophysics - Tập 13 Số 2 - Trang 337-362 - 1975
V. R. Oberbeck1
1NASA Ames Research Center, Moffett Field, California, 94035

Tóm tắt

Many of the lunar surface formations have been emplaced by impact craters. Two mechanisms have been proposed for transport of crater ejecta; both the base surge and ballistic transport mechanisms are reviewed in this paper. Formation of base surges associated with underwater and underground explosion craters and with volcanic events all require the presence of an atmosphere in the area where ejecta impacts. Ejecta impacts and mixes with air and forms an aerosol cloud that carries the dust outward and deposits it on preexisting terrain. Because the moon contains no appreciable atmosphere, it is concluded that the base surge mechanism of separation and transport of fine‐grained crater ejecta is not a viable lunar process. Studies of laboratory impact craters, high‐explosion and nuclear craters, and lunar craters, and theoretical studies of formation of impact craters indicate that material is ejected from impact craters at low angles to the surface. Calculated ejecta positions at constant times after impact of the body that produced Copernicus crater are similar to shapes that are observed when laboratory craters are formed. Results are used to construct a model of emplacement of deposits of craters of all sizes. Particles are emplaced in low‐angle trajectories around the crater from the base of the expanding truncated cone. All of the ejecta of a small crater is emplaced at such a low velocity that the deposit consists entirely of crater ejecta. Therefore the deposit that surrounds the small lunar crater is entirely crater ejecta. When large craters are formed a significant fraction of the crater's ejecta has velocity high enough to crater preexisting terrain when it impacts. It craters preexisting terrain and mixes it with primary crater ejecta. The mixture of debris moves laterally away from the crater a short distance and forms the crater's deposit. It is concluded that deposits of large craters contain local preexisting material as well as crater ejecta. The cratering model is used to synthesize many lunar observations. For example, dunes around small lunar craters can be explained as a result of interaction of the flow with material ejected from secondary craters produced later at greater radial distances. Deceleration lobes and other features also are related to the emplacement model. Mantled Imbrium sculpture is explained as a result of production of the sculpture by secondary cratering due to passage of the conical sheet of ejecta and subsequent mantling of ejecta of secondary craters produced earlier nearer the crater. Model results, coupled with lunar observations, suggest that lunar smooth plains are in some places the erosional products of secondary craters of many highland craters and in some places they were emplaced by basins and consist of basin ejecta mixed with regional and local material. In some places they are predominantly deposits of local primary craters. The small low‐albedo smooth pondlike deposits that surround many lunar craters may be impact melts. If they are and if they were emplaced from ballistic trajectories, then the angles of ejection must have been much higher than the angles of ejection of the other ejecta. Such a bimodal pattern of crater ejecta may be explained if impact occurs in a layered target. This suggests that impact melts in crater deposits may result from stratigraphic layering within the area of the crater.

Từ khóa


Tài liệu tham khảo

Baldwin R. B., 1963, The Measure of the Moon

10.1016/0031-9201(72)90056-8

10.1111/j.1749-6632.1965.tb20409.x

Bessut G., 1970, The effects of variation of charge scale cratering experiments in sand

10.1029/JZ070i008p01897

Carlson R. H. W. A.Roberts Mass distribution and throwout studies Project SedanPNE‐217 F 144Boeing Co. Seattle Wash.1963.

Chao E. C. T., 1973, Geologic implications of the Apollo 14 Fra Mauro breccias and comparison with ejecta from the Ries crater, Germany, J. Res. U.S. Geol. Surv., 1, 1

Chao E. C. T., 1974, Impact cratering models and their application to lunar studies—A geologist's view, Proc. Lunar Sci. Conf. 5th, 1, 35

Chao E. C. T., 1973, Lunar Science, 127

Crittenden M. D. Lunar ‘Mudflows’ in Orbiter V imagery Pap. 506 158–164 Langley Res. Center Hampton Va.1968.

Day W. C. Cloud dimensions for cratering explosionsNCG Tech. Memo. TN 66‐8Lawrence Radiat. Lab. Livermore Calif.1966.

10.1111/j.1945-5100.1964.tb01432.x

10.1111/j.1749-6632.1965.tb20411.x

Dence M. R., 1968, Shock Metamorphism of Natural Materials, 169

Dence M. R., 1972, Analysis of Fra Mauro samples and the origin of the Imbrium basin, Proc. Lunar Science Conf. 3rd, 379

Dence M. R., 1968, Recent geological and geophysical studies of Canadian craters, Contrib. Dominion Observ., 8, 339

10.1029/JB076i023p05394

10.1086/626999

Duval G. E., 1963, Shockwaves in solids, Sci. Technol., 45

Eggleton R. E. Preliminary geology of the Riphaeus quadrangle of the moon and definition of the Fra Mauro formation A Lunar and Planetary Investigation Astrogeol. Studies Annu. Progr. Rep. Aug. 1962 to July 1963 46–63U.S. Geol. Surv. Dep. of Interior Washington D.C.1964.

Eggleton R. E. C. H.Marshall Notes on the Apenninian series and pre‐Imbrium stratigraphy in the vicinity of Mare Imbrium and Mare Nubium Astrogeol. Studies Semi‐annu. Progr. Rep. Feb. 26 1961 to Aug. 24 1961 132–136U.S. Geol. Surv. Dep. of Interior Washington D.C.1962.

Eggleton R. E. G. E.Schaber Cayley Formation interpreted as basin ejecta Apollo 16 Preliminary Science ReportNASA Spec. Publ. SP‐315 29‐7–29‐16 1972.

El Baz F., 1971, Analysis of Apollo 10 Photograph and Visual Observations, 2, NASA Spec. Publ. SP‐232, 29

El Baz F. King crater and its environs Apollo 16 Preliminary Science Report MNASA Spec. Publ. SP‐315 29‐62–29‐68 1972.

Engel O. G. Collisions of liquid drops with liquids Crater Depth in Fluid ImpactsT. R. WADD‐TR‐60‐475 52Nat. Bur. of Stand. Washington D.C.1962.

10.1007/BF02596768

10.1029/JB075i023p04396

Fulmer C. V. D. M.Young J. A.Blaylock G. L.Keister Cratering characteristics of wet and dry sandD. Z. 90683‐1Boeing Co. Seattle Wash.1964.

Gault D. E., 1968, Shock Metamorphism of Natural Materials, 87

Guest J. E., 1971, Geology and Physics of the Moon, 93

10.1130/0016-7606(1973)84<2873:SOEFTL>2.0.CO;2

Hartmann W. K., 1964, Commun. Lunar Planet. Lab., 2, 182

Head J. W. Small‐scale analogs of the Cayley Formation and Descartes Mountains and impact‐associated deposits Apollo 16 Preliminary Science ReportNASA Spec. Publ. SP‐315 29‐26–29‐20 1972.

Head J. W., 1975, Proceedings of the Soviet‐American Conference on Cosmochemistry of the Moon and Planets

Head J. W., 1975, Stratigraphy of the Descartes region (Apollo 16): Implications for the origin of samples, Moon

Heiken G. H., 1973, Preliminary stratigraphy of the Apollo 15 drill core, Proc. Lunar Sci. Conf. 4th, 1, 191

Henry R. W. andR. H.Carlson Natural missile distributions for high explosive craters in hard rock 3 Multiple Threat Cratering Experiment Tech. Rep. A.F.W.L.‐TR‐67‐8 Air Force Weapons Lab. Kirtland Air Force Base N. Mex.1970.

Hodges C. A., 1973, Geologic setting of Apollo 16, Proc. Lunar Sci. Conf. 4th, 1, 1

10.1007/BF01128707

Howard K. A., 1971, Analysis of Apollo 10 Photography and Visual Observations, NASA Spec. Publ. SP‐232, 12

Howard K. A. Ejecta blankets of large craters exemplified by King crater Apollo 16 Preliminary Science ReportNASA Spec. Publ. SP‐315 29‐70–29‐77 1972.

Howard K. A., 1974, Fresh lunar impact craters: Review of variations with size, Proc. Lunar Sci. Conf. 5th, 1, 61

Howard K. A., 1975, Flows of impact melts at lunar craters, J. Res. U.S. Geol. Surv.

10.1029/RG012i003p00309

Hüttner R., 1969, Bunte Trümmermassen und Suevit, Geol. Bavarica, 61, 142

10.1038/201592a0

Knox J. B. R.Rhorer Base surge analysis final reportPNE‐304Lawrence Radiat. Lab. Livermore Calif.1963.

Knox J. B. H. A.Tewes T. V.Crawford T. A.GibsonJr. Radioactivity released from underground nuclear detonations: Source transport diffusion and depositionUCRL‐50230Lawrence Radiat. Lab. Livermore Calif.1970.

Lindsay J. F., 1974, Lunar Science, 450

Masursky H. Preliminary geologic interpretation of lunar orbiter photography Hearings before theSubcommittee on Space Science and Applications of the Committee on Science and Astronautics U.S. House of Representatives House Doc. 15086 pp.665–691 90th Congress 2nd Session 1968.

McCauley J. F., 1967, Mantles of the Moon and Terrestrial Planets, 431

McCauley J. F. H.Masursky The Orientale basin and associated base surge deposits64th Annual MeetingGeol. Soc. Amer.Tucson Ariz. 1968.

10.1016/0012-821X(73)90162-3

10.1029/JB076i023p05658

10.1007/BF02597678

10.1029/JB076i023p05750

Moore H. J. R. V.Lugn A missile impact in water saturated sediments B Crater Investigations Astrogeol. Studies Annu. Progr. Rep. July 1 1964 to July 1 1965 101–126U.S. Geol. Surv. Washington D.C.1966.

Moore H. J., 1974, Multiringed basins—Illustrated by Orientale and associated features, Proc. Lunar Sci. Conf. 5th, 1, 71

10.1029/JB076i023p05732

10.1007/BF00562581

Oberbeck V. R. F.Hörz R. H.Morrison W. L.Quaide Emplacement of the Cayley Formation NASA TMX 62–302 1973.

Oberbeck V. R., 1974, Smooth plains and continuous deposits of craters and basin, Proc. Lunar Science Conf. 5th, 1, 111

10.1007/BF02626332

Öpik E. J., 1971, Advances in Astronomy and Astrophysics, 108

10.1016/0012-821X(74)90114-9

Preuss E., 1964, Das Ries und die Meteororitentheorie, Fortschr. Mineral., 41, 271

10.1029/JB073i016p05247

10.1029/JB077i032p06303

10.1016/0019-1035(66)90059-5

Roberts W. A., 1968, Shock Metamorphism of Natural Materials

Rohrer R. Base surge and cloud formation final reportPNE‐503 FLawrence Radiat. Lab. Livermore Calif.1965.

Scott D. H., 1974, Lunar Science, 695

10.1016/0012-821X(74)90115-0

Shoemaker E. M., 1962, Physics and Astronomy of the Moon

Shoemaker E. M., 1963, The Moon, Meteorites, and Comets

10.1017/S007418090017826X

Shoemaker E. M. R. J.Hackman R. E.Eggleton C. H.Marshall Lunar stratigraphic nomenclature Astrogeol. Studies Smi‐annu. Progr. Rep Feb. 1961 to Aug. 1961 114–116U.S. Geol. Surv. Dep. of Interior Washington D.C.1962.

Shoemaker E. M. R. M.Batson H. E.Holt E. C.Morris J. J.Rennilson E. A.Whitaker Television observations from Surveyor VII Surveyor VII Mission Report part 3 Science Results part 2Tech. Rep 32‐1264 9–76Jet Propul. Lab. Pasadena Calif.1968.

10.1111/j.1749-6632.1965.tb20389.x

Short N. M., 1972, Thickness of impact crater ejecta on the lunar surface, Mod. Geol., 3, 69

Soderblom L. J. M.Boyce Relative ages of some near side and far side terra plains based on Apollo 16 metric photography Apollo 16 Preliminary Science ReportNASA Spec. Publ. SP‐315 29‐3–29‐7 1972.

10.1029/JB080i029p04062

10.1038/217611a0

Strom R. G., 1971, Geology and Physics of the Moon, A Study of Some Fundamental Problems, 55

Strom R. G., 1971, Analysis of Apollo 10 Photography and Visual Observations, NASA Spec. Publ. SP‐232, 20

Toksöz M. N., 1973, Velocity structure and evolution of the moon, Proc. Lunar Sci. Conf. 4th, 3, 2529

10.1038/2201102a0

Von Engelhardt W., 1969, Petrologische Untersuchungen im Ries, ‘Bunte Breccie,’, Geol. Bavarica, 61, 276

10.1029/JB076i023p05566

Wagner G. H., 1964, Kleinteklonische Untersuchungen im Gebiet des Nordlinger Rieses, Geol. Jahr., 81, 519

10.1029/JB076i023p05596

Wilhelms D. E. Summary of lunar stratigraphy—Telescopic observations Geol. Surv. Prof. Pap. 599‐F 1–47 1970.

10.1016/0019-1035(71)90115-1

Wilhelms D. E., 1971, Geological Atlas of the Moon

Young G. A. The physics of the base surgeNOL TR 64‐103 234U.S. Nav. Ord. Lab. White Oak Md.1965.

Young R. A. W. J.Brennan R. W.Wolfe Selected volcanic and surficial features Apollo 16 Preliminary Science Report ONASA Spec. Publ. SP‐315 29‐78–29‐79 1972.