The role of an aligned investor sentiment index in predicting bond risk premia of the U.S
Tài liệu tham khảo
Bai, 2008, Forecasting economic time series using targeted predictors, J. Econom., 146, 304, 10.1016/j.jeconom.2008.08.010
Baker, 2006, Investor sentiment and the cross-section of stock returns, J. Finance, 61, 1645, 10.1111/j.1540-6261.2006.00885.x
Baker, 2007, Investor sentiment in the stock market, J. Econ. Perspect., 21, 129, 10.1257/jep.21.2.129
Baker, 2012, Comovement and predictability relationships between bonds and the cross-section of stocks, Review of Asset Pricing Studies, 2, 57, 10.1093/rapstu/ras002
Balcilar, 2019, Oil price uncertainty and movements in the U.S. Government bond risk premia, N. Am. J. Econ. Finance
Bianchi, 2019
Boivin, 2006, Are more data always better for factor analysis?, J. Econom., 132, 169, 10.1016/j.jeconom.2005.01.027
Campbell, 1991, Yield spreads and interest rates: a bird's eye view, Rev. Econ. Stud., 58, 495, 10.2307/2298008
Campbell, 2008, Predicting excess stock returns out of sample: can anything beat the historical average?, Rev. Financ. Stud., 21, 1509, 10.1093/rfs/hhm055
Çepni, 2019, Time-varying risk aversion and the predictability of bond premia, Finance Res. Lett.
Çepni, 2019, Local currency bond risk premia: a panel evidence on emerging markets, Emerg. Mark. Rev., 38, 182, 10.1016/j.ememar.2019.01.002
Çepni, 2019, Variants of consumption-wealth ratios and predictability of U.S. Government bond risk premia, Int. Rev. Finance, 10.1111/irfi.12283
Chen, 2019
Cieslak, 2015, Expected returns in Treasury bonds, Rev. Financ. Stud., 28, 2859, 10.1093/rfs/hhv032
Cochrane, 2005, Bond risk premia, Am. Econ. Rev., 95, 138, 10.1257/0002828053828581
Cooper, 2009, Time-varying risk premiums and the output gap, Rev. Financ. Stud., 22, 2801, 10.1093/rfs/hhn087
Demirer, 2018, Presidential cycles and time-varying bond–stock market correlations: evidence from more than two centuries of data, Econ. Lett., 167, 36, 10.1016/j.econlet.2018.03.006
Duffie, 2011, Information in (and not in) the term structure, Rev. Financ. Stud., 24, 2895, 10.1093/rfs/hhr033
Fama, 1987, The information in long-maturity forward rates, Am. Econ. Rev., 77, 680
Fama, 1989, Business conditions and expected returns on stocks and bonds, J. Financ. Econ., 25, 23, 10.1016/0304-405X(89)90095-0
Friedman, 2001, vol. 1
Garcia, 2013, Sentiment during recessions, J. Finance, 68, 1267, 10.1111/jofi.12027
Gargano, 2019, Bond return predictability: economic value and links to the macroeconomy, Manag. Sci., 65, 459, 10.1287/mnsc.2017.2829
Ghysels, 2018, Forecasting through the rear-view mirror: data revisions and bond return predictability, Rev. Financ. Stud., 31, 678, 10.1093/rfs/hhx098
Greenwood, 2014, Bond supply and excess bond returns, Rev. Financ. Stud., 27, 663, 10.1093/rfs/hht133
Habib, 2015, Is there a global safe haven?, Int. Finance, 18, 281, 10.1111/infi.12078
Hager, 2017, A global bond: explaining the safe-haven status of U.S. Treasury securities, Eur. J. Int. Relat., 23, 557, 10.1177/1354066116657400
Harvey, 1997, Testing the equality of prediction mean squared errors, Int. J. Forecast., 13, 281, 10.1016/S0169-2070(96)00719-4
Henkel, 2011, Time-varying short-horizon predictability, J. Financ. Econ., 99, 560, 10.1016/j.jfineco.2010.09.008
Huang, 2015, Investor sentiment aligned: a powerful predictor of stock returns, Rev. Financ. Stud., 28, 791, 10.1093/rfs/hhu080
Jiang, 2019, Manager sentiment and stock returns, J. Financ. Econ., 132, 126, 10.1016/j.jfineco.2018.10.001
Joslin, 2014, Risk premiums in dynamic term structure models with unspanned macro risks, J. Finance, 69, 1197, 10.1111/jofi.12131
Keim, 1986, Predicting returns in the stock and bond markets, J. Financ. Econ., 17, 357, 10.1016/0304-405X(86)90070-X
Kelly, 2013, Market expectations in the cross-section of present values, J. Finance, 68, 1721, 10.1111/jofi.12060
Kelly, 2015, The three-pass regression filter: a new approach to forecasting using many predictors, J. Econom., 186, 294, 10.1016/j.jeconom.2015.02.011
Kim, 2014, Forecasting financial and macroeconomic variables using data reduction methods: new empirical evidence, J. Econom., 178, 352, 10.1016/j.jeconom.2013.08.033
Kim, 2018, Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods, Int. J. Forecast., 34, 339, 10.1016/j.ijforecast.2016.02.012
Kopyl, 2016, How safe are the safe haven assets?, Financ. Mark. Portfolio Manag., 30, 453, 10.1007/s11408-016-0277-5
Kuzin, 2011, MIDAS vs. mixed-frequency VAR: nowcasting GDP in the euro area, Int. J. Forecast., 27, 529, 10.1016/j.ijforecast.2010.02.006
Kuzin, 2013, Pooling versus model selection for nowcasting gdp with many predictors: empirical evidence for six industrialized countries, J. Appl. Econom., 28, 392, 10.1002/jae.2279
Laborda, 2014, Investor sentiment and bond risk premia, J. Financ. Mark., 18, 206, 10.1016/j.finmar.2013.05.008
Ludvigson, 2009, Macro factors in bond risk premia, Rev. Financ. Stud., 22, 5027, 10.1093/rfs/hhp081
Ludvisgon, 2011, A factor Analysis of bond risk premia, 313
Nayak, 2010, Investor sentiment and corporate bond yield spreads, Review of Behavioural Finance, 2, 59, 10.1108/19405979201000004
Pettenuzzo, 2014, Forecasting stock returns under economic constraints, J. Financ. Econ., 114, 517, 10.1016/j.jfineco.2014.07.015
Plakandaras, 2017, Do leading indicators forecast U.S. recessions? A nonlinear re-evaluation using historical data, Int. Finance, 20, 289, 10.1111/infi.12111
Plakandaras, 2017, The informational content of the term spread in forecasting the US inflation rate: a nonlinear approach, J. Forecast., 36, 109, 10.1002/for.2417
Plakandaras, 2019, A Re-evaluation of the term spread as a leading indicator, Int. Rev. Econ. Finance, 64, 476, 10.1016/j.iref.2019.07.002
Rapach, 2010, Out-of-sample equity premium prediction: combination forecasts and links to the real economy, Rev. Financ. Stud., 23, 821, 10.1093/rfs/hhp063
Shiller, 2000, Irrational exuberance, Philosophy and Public Policy Quarterly, 20, 18
Stock, 2012, Generalized shrinkage methods for forecasting using many predictors, J. Bus. Econ. Stat., 30, 481, 10.1080/07350015.2012.715956
Tetlock, 2007, Giving content to investor sentiment: the role of media in the stock market, J. Finance, 62, 1139, 10.1111/j.1540-6261.2007.01232.x
Tetlock, 2008, More than words: quantifying language to measure firms' fundamentals, J. Finance, 63, 1437, 10.1111/j.1540-6261.2008.01362.x
Wold, 1966, Estimation of principal component and related models by iterative least squares, 391
Wold, 1975, Path models with latent variables: the NIPALS approach
Zhu, 2015, Out-of-sample bond risk premium predictions: a global common factor, J. Int. Money Finance, 51, 155, 10.1016/j.jimonfin.2014.11.004