The role of ammonia metabolism in nitrogen catabolite repression inSaccharomyces cerevisiae
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cooper, T.G. (1982) Nitrogen metabolism in Saccharomyces cerevisiae. In: The Molecular Biology of the Yeast Saccharomyces (Strathern, J.N., Jones, E.W. and Broach, J.R., Eds.), pp. 39–99. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
Magasanik, B. (1992) Regulation of nitrogen utilization. In: The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression (Jones, E.W., Pringle, J.R. and Broach, J.R., Eds.), pp. 283–317. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Mitchell A.P. Magasanik B. (1983) Purification and properties of glutamine synthetase from Saccharomyces cerevisiae . J. Biol. Chem. 258, 119–124.
Mitchell A.P. Magasanik B. (1984) Biochemical and physiological aspects of glutamine synthetase inactivation in Saccharomyces cerevisiae . J. Biol. Chem. 259, 12054–12062.
Roon R.J. Even H.L. Larimore F. (1974) Glutamate synthase: Properties of the reduced nicotinamide adenine dinucleotide-dependent enzyme from Saccharomyces cerevisiae . J. Bacteriol. 118, 89–95.
Cogoni C. Valenzuela L. González-halphen D. Olivera H. Macino G. Ballario P. González A. (1995) Saccharomyces cerevisiae has a single glutamate synthase gene coding for a plant-like high-molecular-weight polypeptide. J. Bacteriol. 177, 792–798.
Kim K.W. Kamerud J.Q. Livingston D.M. Roon R.J. (1988) Asparaginase II of Saccharomyces cerevisiae. Characterization of the ASP3 gene. J. Biol. Chem. 263, 11948–11953.
Krzywicki K.A. Brandriss M.C. (1984) Primary structure of the nuclear PUT2 gene involved in the mitochondrial pathway for proline utilization in Saccharomyces cerevisiae . Mol. Cell. Biol. 4, 2837–2842.
Brandriss M.C. Krzywicki K.A. (1986) Amino-terminal fragments of delta 1-pyrroline-5-carboxylate dehydrogenase direct beta-galactosidase to the mitochondrial matrix in Saccharomyces cerevisiae . Mol. Cell. Biol. 6, 3502–3512.
Grenson M. Hou C. Crabeel X. (1970) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J. Bacteriol. 103, 770–777.
Lasko P.F. Brandriss M.C. (1981) Proline transport in Saccharomyces cerevisiae . J. Bacteriol. 148, 241–247.
Cooper T.G. Sumrada R.A. (1983) What is the function of nitrogen catabolite repression in Saccharomyces cerevisiae . J. Bacteriol. 155, 623–627.
Grenson M. (1983) Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae . Eur. J. Biochem. 133, 135–139.
Grenson, M. (1992) Amino acid transporters in yeast: structure function and regulation. In: Molecular Aspects of Transfer Proteins (De Pont, Ed.), pp. 219–245. Elsevier Science, Amsterdam.
Stanbrough M. Magasanik B. (1995) Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae . J. Bacteriol. 177, 94–102.
Silve S. Volland C. Garnier C. Jund R. Chevallier M.R. Haguenauer-Tsapis R. (1991) Membrane insertion of uracil permease, a polytopic yeast plasma membrane protein. Mol. Cell. Biol. 11, 1114–1124.
Volland C. Garnier C. Haguenauer-Tsapis R. (1987) In vivo phophorylation of the yeast uracil permease. J. Biol. Chem. 267, 23767–23771.
Volland C. Urban-Grimal D. Geraud G. Haguenauer-Tsapis R. (1994) Endocytosis and degradation of the yeast uracil permease under adverse conditions. J. Biol. Chem. 269, 9833–9841.
Vandenbol M. Jauniaux J.-C. Vissers S. Grenson M. (1987) Isolation of the NPR1 gene responsible for the inactivation of ammonia-sensitive amino-acid permeases in Saccharomyces cerevisiae. RNA analysis and gene dosage effects. Eur. J. Biochem. 164, 607–612.
Hein, C. and Andre, B. (1994) The general amino acid permease GAP1 is degraded during nitrogen catabolite inactivation: mutations affecting the carboxyterminus of GAP1 make it resistant to triggered degradation. Proceedings of the 12th Small Meeting on Yeast Transport and Energetics, 15–17 September, Karpacz.
Roberg K.J. Bickel S. Rowley N. Kaiser C.A. (1997) Control of amino acid permease sorting in late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8 . Genetics 147, 1569–1584.
Brandriss M.C. Magasanik B. (1979) Genetics and physiology of proline utilization in Saccharomyces cerevisiae: mutation causing constitutive enzyme expression. J. Bacteriol. 140, 504–507.
Brandriss M.C. (1987) Evidence for positive regulation of the proline utilization pathway in Saccharomyces cerevisiae . Genetics 117, 429–435.
Siddiqui A.H. Brandriss M.C. (1988) A regulatory region responsible for proline-specific induction of the yeast PUT2 gene is adjacent to its TATA box. Mol. Cell. Biol. 8, 4634–4641.
Axelrod J.D. Majors J. Brandriss M.C. (1991) Proline-independent binding of PUT3 transcriptional activator protein detected by footprinting in vivo. Mol. Cell. Biol. 11, 564–567.
Marczak J.E. Brandriss M.C. (1991) Analysis of constitutive and noninducable mutations of the PUT3 transcriptional activator. Mol. Cell. Biol. 11, 2609–2619.
Wang S.S. Brandriss M.C. (1986) Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT1 gene. Mol. Cell. Biol. 6, 2638–2645.
Xu S. Falvey D.A. Brandriss M.C. (1995) Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae . Mol. Cell. Biol. 15, 2321–2330.
Rai R. Genbauffe F.S. Cooper T.G. (1987) Transcriptional regulation of the DAL5 gene in Saccharomyces cerevisiae . J. Bacteriol. 169, 3521–3524.
Rai R. Genbauffe F.S. Cooper T.G. (1987) Structure and transcription of the allantoate permease gene (DAL5) from Saccharomyces cerevisiae . J. Bacteriol. 170, 266–271.
Rai R. Genbauffe F.S. Sumrada R.A. Cooper T.G. (1989) Identification of sequences responsible for transcriptional activation of the allantoate permease gene in Saccharomyces cerevisiae . Mol. Cell. Biol. 9, 602–608.
Cooper T.G. Rai R. Yoo H.S. (1989) Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae . Mol. Cell. Biol. 9, 5440–5444.
Cunningham T.S. Cooper T.G. (1991) Expression of the DAL80 gene, whose product is homologous to GATA factors and is a negative regulator of multiple catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression. Mol. Cell. Biol. 11, 6205–6215.
Coffman J.A. El Berry H.M. Cooper T.G. (1994) The URE2 protein regulates nitrogen catabolic gene expression through the GATAA-containing UASNTR element in Saccharomyces cerevisiae . J. Bacteriol. 176, 7476–7483.
Coffman J.A. Rai R. Cunningham T. Svetlov V. Cooper T.G. (1996) Gat1p, a GATA-family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae . Mol. Cell. Biol. 16, 847–858.
Daugherty J.R. Rai R. El Berry H.M. Cooper T.G. (1993) Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae . J. Bacteriol. 175, 64–73.
Bysani N. Daugherthy J.R. Cooper T.G. (1991) Saturation mutagenesis of the UASNTR (GATAA) responsible for nitrogen catabolite-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae . J. Bacteriol. 173, 4977–4982.
Mitchell A.P. Magasanik B. (1984) Regulation of glutamine repressible gene products by the GLN3 function in Saccharomyces cerevisiae . Mol. Cell. Biol. 4, 2758–2766.
Minehart P.L. Magasanik B. (1991) Sequence and expression of GLN3, a positive regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain. Mol. Cell. Biol. 11, 6216–6228.
Coschigano P.W. Magasanik B. (1991) The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases. Mol. Cell. Biol. 11, 822–832.
Cunningham T.S. Cooper T.G. (1993) The Saccharomyces cerevisiae DAL80 repressor protein binds to multiple copies of GATAA-containing sequences (URS GATA). J. Bacteriol. 175, 5851–5861.
Cunningham T.S. Dorrington R.A. Cooper T.G. (1994) The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae . J. Bacteriol. 176, 4718–4725.
Coffman J.A. Cooper T.G. (1997) Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae . J. Bacteriol. 179, 5609–5613.
Courchesne W.E. Magasanik B. (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J. Bacteriol. 170, 708–713.
Cooper T.G. Ferguson D. Rai R. Bysani N. (1990) The GLN3 gene product is required for transciptional activation of allantoin system gene expression in Saccharomyces cerevisiae . J. Bacteriol. 172, 1014–1018.
Minehart P.L. Magasanik B. (1992) Sequence of the GLN1 gene of Saccharomyces cerevisiae: Role of the upstream region in regulation of glutamine synthetase expression. J. Bacteriol. 174, 1828–1836.
Coffman J.A. Rai R. Cooper T.G. (1995) Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae . J. Bacteriol. 177, 6910–6918.
Blinder D. Magasanik B. (1995) Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene. J. Bacteriol. 177, 4190–4193.
Rowen D.W. Esiobu N. Magasanik B. (1997) Role of the GATA factor Nil2p in nitrogen regulation of gene expression in Saccharomyces cerevisiae . J. Bacteriol. 179, 3761–3766.
Smart W.C. Coffman J.A. Cooper T. (1996) Combinatorial regulation of the Saccharomyces cerevisiae CAR1 (arginase) promoter in response to multiple environmental signals. Mol. Cell. Biol. 16, 5876–5887.
Horiuchi J. Silverman N. Marcus G.A. Guarente L. (1995) ADA3, a putative transcriptional adaptor consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex. Mol. Cell. Biol. 15, 1203–1209.
Horiuchi J. Silverman N. Pina B. Marcus G.A. Guarente L. (1997) ADA1, a novel component of the ADA/GCN5 complex, has broader effects than GCN5, ADA2, or ADA3. Mol. Cell. Biol. 17, 3220–3228.
Chrisholm G. Cooper T.G. (1982) Isolation and characterization of mutantions that produce the allantoine-degrading enzymes constitutively in Saccharomyces cerevisiae . Mol. Cell. Biol. 2, 1088–1095.
Galibert F. et al. (1996) Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X. EMBO J. 15, 2031–2049.
Blinder D. Coschigano P. Magasanik B. (1996) Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae . J. Bacteriol. 178, 4734–4736.
Lacroute F. (1971) Non-mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106, 519–522.
Marini A.-M. Vissers S. Urrestarazu A. André B. (1994) Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae . EMBO J. 13, 3456–3463.
Marini, A.-M., Vissers, S., André, B. Ammonium transport in Saccharomyces cerevisiae,. Yeast. 11, 1995. 425
Marini A.-M. Soussi-Boudekou S. Vissers S. Andre B. (1997) A family of ammonium transporters in Saccharomyces cerevisiae . Mol. Cell. Biol. 17, 4282–4293.
ter Schure E.G. Silljé H.H.W. Verkleij A.J. Boonstra J. Verrips C.T. (1995) The concentration of ammonia regulates nitrogen metabolism in Saccharomyces cerevisiae . J. Bacteriol. 177, 6671–6675.
Moye W.S. Amuro N. Rao J.K. Zalkin H. (1985) Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase. J. Biol. Chem. 260, 8502–8508.
Avendano A. Deluna A. Olivera H. Valenzuela L. Gonzalez A. (1997) GDH3 encodes glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae . J. Bacteriol. 179, 5594–5597.
Boy-Marcotte E. Perrot M. Bussereau F. Boucherie H. Jacquet M. (1998) Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae . J. Bacteriol. 180, 1044–1052.
Friden P. (1988) LEU3 of Saccharomyces cerevisiae activates multiple genes for branched-chain amino-acid biosynthesis by binding to a common decanucleotide core sequence. Mol. Cell. Biol. 8, 2690–2697.
Brisco P.R. Cunningham T.S. Koholhaw G.B. (1987) Cloning, disruption and chromosomal mapping of yeast LEU3, a putative regulatory gene. Genetics 115, 91–99.
Hu Y. Cooper T.G. Kohlaw G.B. (1995) The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation. Mol. Cell. Biol. 15, 52–57.
Dang V.-D. Bohn C. Bolotin-Fukuhara M. Daignan-Fornier B. (1996) The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J. Bacteriol. 178, 1842–1849.
Hahn S. Pinkham J. Wei R. Miller R. Guarente L. (1988) The HAP3 regulatory locus of Saccharomyces cerevisiae encodes divergent overlapping transcripts. Mol. Cell. Biol. 8, 655–663.
Pinkman J.L. Guarente L. (1985) Cloning and molecular analysis of the HAP2 locus: a global regulation of respiratory genes in Saccharomyces cerevisiae . Mol. Cell. Biol. 5, 3410–3416.
Kwast K.E. Burke P.V. Poyton R.O. (1998) Oxygen sensing and the transcriptional regulation of oxygen-responsive genes in yeast. J. Exp. Biol. 201, 1177–1195.
Hinnebusch A.G. (1988) Mechanism of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae . Microbiol. Rev. 52, 248–273.
Hemmings, B.A. (1984) The role of protein phosphorylation in the regulation of the NAD-dependent glutamate dehydrogenase from yeast. In: Enzyme Regulation by Reversible Phosphorylation – Further Advances, pp. 155–165. Elsevier Science, Amsterdam.
Coschigano P.W. Miller S.M. Magasanik B. (1991) Physiological and genetic analysis of the carbon regulation of the NAD-dependent glutamate dehydrogenase of Saccharomyces cerevisiae . Mol. Cell. Biol. 11, 4455–4465.
Miller S.M. Magasanik B. (1991) Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae . Mol. Cell. Biol. 11, 6229–6247.
Hemmings B.A. (1978) Phosphorylation of NAD-dependent glutamate dehydrogenase from yeast. J. Biol. Chem. 253, 5255–5258.
Valenzuela L. Ballario P. Aranda C. Filetici P. Gonzalez A. (1998) Regulation of expression of GLT1, the gene encoding glutamte synthase in Saccharomyces cerevisiae . J. Bacteriol. 180, 3533–3540.
Courchesne W.E. Magasanik B. (1983) Ammonia regulation of amino acid permeases in Saccharomyces cerevisiae . Mol. Cell. Biol. 3, 672–683.
Magasanik B. (1988) Reversible phosphorylation of an enhancer binding protein regulates the transcription of bacterial nitrogen utilization genes. Trends Biochem. Sci. 13, 473–479.
ter Schure, E.G. (1996) Nitrogen Repression in Saccharomyces cerevisiae: Ammonia as a Key Regulator. Thesis.
ter Schure E.G. Silljé H.H.W. Vermeulen E.E. Kalhorn J.-W. Verkleij A.J. Boonstra J. Verrips C.T. (1998) Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae . Micriobiology 144, 1451–1462.
van Riel, N.A.W., Giuseppin M.L.F. and Verrips, C.T. (1999) Dynamic optimal control of homeostasis; an integrative system approach for modelling of the Central Nitrogen Metabolism in Saccharomyces cerevisiae. Metab. Eng. (submitted).
Guillemont, J.M., van Riel, N.A.W. and Verrips, C.T., The role of the Gogat enzyme in central nitrogen metabolism; a physiological and gene expression analysis of the VWK43(WT) and VWPK274 (glt1) (in preparation).
van Riel, N.A.W., Giuseppin, M.L.F. and Verrips, C.T., A hybrid kinetic and cybernetic model of pathways and regulation of the central nitrogen metabolism in Saccharomyces (in preparation).