The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies

Shiyao Zhang1, Nur Farah Meor Azlan2, Sunday Solomon Josiah2, Jing Zhou3, Xiaoxia Zhou1, Lingjun Jie1, Yanhui Zhang1, Cuilian Dai1, Dong Liang4, Peifeng Li5, Zhengqiu Li6, Zhen Wang7, Yun Wang3, Ke Ding7, Yan Wang1, Jinwei Zhang1,2,7
1Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
2Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
3Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
4Aurora Discovery Inc., Foshan, Guangdong, 528300, China
5Institute for Translational Medicine, Qingdao University, Qingdao, Shandong, 266021, China
6School of Pharmacy, Jinan University, Guangzhou, 510632, China
7State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China

Tài liệu tham khảo

Venter, 2001, The sequence of the human genome, Science, 291, 1304, 10.1126/science.1058040 Santos, 2017, A comprehensive map of molecular drug targets, Nat. Rev. Drug Discov., 16, 19, 10.1038/nrd.2016.230 Alessi, 2014, The WNK-SPAK/OSR1 pathway: Master regulator of cation-chloride cotransporters, Sci. Signal., 7, re3, 10.1126/scisignal.2005365 Grozio, 2019, Slc12a8 is a nicotinamide mononucleotide transporter, Nat. Metab., 1, 47, 10.1038/s42255-018-0009-4 Ito, 2022, Slc12a8 in the lateral hypothalamus maintains energy metabolism and skeletal muscle functions during aging, Cell Rep., 40, 10.1016/j.celrep.2022.111131 Caron, 2000, Cloning and functional characterization of a cation-Cl- cotransporter-interacting protein, J. Biol. Chem., 275, 32027, 10.1074/jbc.M000108200 Chew, 2019, Structure and mechanism of the cation-chloride cotransporter NKCC1, Nature, 572, 488, 10.1038/s41586-019-1438-2 Neumann, 2022, Cryo-EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity, EMBO J., 41, 10.15252/embj.2021110169 Fan, 2023, Structure and thiazide inhibition mechanism of the human Na-Cl cotransporter, Nature, 614, 788, 10.1038/s41586-023-05718-0 Nan, 2022, Cryo-EM structure of the human sodium-chloride cotransporter NCC, Sci. Adv., 8, 10.1126/sciadv.add7176 Liu, 2019, Cryo-EM structures of the human cation-chloride cotransporter KCC1, Science, 366, 505, 10.1126/science.aay3129 Chi, 2021, Cryo-EM structures of the full-length human KCC2 and KCC3 cation-chloride cotransporters, Cell Res., 31, 482, 10.1038/s41422-020-00437-x Xie, 2020, Structures and an activation mechanism of human potassium-chloride cotransporters, Sci. Adv., 6, 10.1126/sciadv.abc5883 Reid, 2020, Cryo-EM structure of the potassium-chloride cotransporter KCC4 in lipid nanodiscs, Elife, 9, 10.7554/eLife.52505 Retterer, 2016, Clinical application of whole-exome sequencing across clinical indications, Genet. Med., 18, 696, 10.1038/gim.2015.148 Turner, 2019, Sex-based analysis of de novo variants in neurodevelopmental disorders, Am. J. Hum. Genet., 105, 1274, 10.1016/j.ajhg.2019.11.003 Daga, 2018, Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis, Kidney Int., 93, 204, 10.1016/j.kint.2017.06.025 Gamba, 1994, Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney, J. Biol. Chem., 269, 17713, 10.1016/S0021-9258(17)32499-7 Payne, 1994, Alternatively spliced isoforms of the putative renal Na-K-Cl cotransporter are differentially distributed within the rabbit kidney, Proc. Natl. Acad. Sci. U S A, 91, 4544, 10.1073/pnas.91.10.4544 McNeill, 2020, SLC12A2 variants cause a neurodevelopmental disorder or cochleovestibular defect, Brain, 143, 2380, 10.1093/brain/awaa176 Marchese, 2016, Targeted gene resequencing (astrochip) to explore the tripartite synapse in autism-epilepsy phenotype with macrocephaly, Neuromolecular Med., 18, 69, 10.1007/s12017-015-8378-2 Valentino, 2021, Exome sequencing in 200 intellectual disability/autistic patients: New candidates and atypical presentations, Brain Sci., 11, 936, 10.3390/brainsci11070936 Merner, 2016, Gain-of-function missense variant in SLC12A2, encoding the bumetanide-sensitive NKCC1 cotransporter, identified in human schizophrenia, J. Psychiatr. Res., 77, 22, 10.1016/j.jpsychires.2016.02.016 Morita, 2014, Characteristics of the cation cotransporter NKCC1 in human brain: Alternate transcripts, expression in development, and potential relationships to brain function and schizophrenia, J. Neurosci., 34, 4929, 10.1523/JNEUROSCI.1423-13.2014 Anazi, 2017, Expanding the genetic heterogeneity of intellectual disability, Hum. Genet., 136, 1419, 10.1007/s00439-017-1843-2 Macnamara, 2019, Kilquist syndrome: A novel syndromic hearing loss disorder caused by homozygous deletion of SLC12A2, Hum. Mutat., 40, 532, 10.1002/humu.23722 Stödberg, 2020, SLC12A2 mutations cause NKCC1 deficiency with encephalopathy and impaired secretory epithelia, Neurol. Genet., 6, e478, 10.1212/NXG.0000000000000478 Mutai, 2020, Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans, PLoS Genet., 16, 10.1371/journal.pgen.1008643 Santos-Cortez, 2021, Identification of novel candidate genes and variants for hearing loss and temporal bone anomalies, Genes (Basel), 12, 566, 10.3390/genes12040566 Adadey, 2021, Further confirmation of the association of SLC12A2 with non-syndromic autosomal-dominant hearing impairment, J. Hum. Genet., 66, 1169, 10.1038/s10038-021-00954-6 Liu, 2019, Association of rare recurrent copy number variants with congenital heart defects based on next-generation sequencing data from family trios, Front. Genet., 10, 819, 10.3389/fgene.2019.00819 Delpire, 1994, Molecular cloning and chromosome localization of a putative basolateral Na+-K+-2Cl− cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells, J. Biol. Chem., 269, 25677, 10.1016/S0021-9258(18)47302-4 Xu, 1994, Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter, Proc. Natl. Acad. Sci. U S A, 91, 2201, 10.1073/pnas.91.6.2201 Huang, 2018, Genetic evaluation of 114 Chinese short stature children in the next generation era: A single center study, Cell. Physiol. Biochem., 49, 295, 10.1159/000492879 Tanaka, 2003, Association of solute carrier family 12 (sodium/chloride) member 3 with diabetic nephropathy, identified by genome-wide analyses of single nucleotide polymorphisms, Diabetes, 52, 2848, 10.2337/diabetes.52.11.2848 Dewey, 2016, Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study, Science, 354, aaf6814, 10.1126/science.aaf6814 Gamba, 1993, Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter, Proc. Natl. Acad. Sci. U S A, 90, 2749, 10.1073/pnas.90.7.2749 Iossifov, 2014, The contribution of de novo coding mutations to autism spectrum disorder, Nature, 515, 216, 10.1038/nature13908 Lim, 2017, Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder, Nat. Neurosci., 20, 1217, 10.1038/nn.4598 Subramanian, 2020, Exome sequencing of familial high-grade serous ovarian carcinoma reveals heterogeneity for rare candidate susceptibility genes, Nat. Commun., 11, 1640, 10.1038/s41467-020-15461-z Ulirsch, 2016, Systematic functional dissection of common genetic variation affecting red blood cell traits, Cell, 165, 1530, 10.1016/j.cell.2016.04.048 Southgate, 2015, Haploinsufficiency of the NOTCH1 receptor as a cause of Adams-Oliver syndrome with variable cardiac anomalies, Circ. Cardiovasc. Genet., 8, 572, 10.1161/CIRCGENETICS.115.001086 Gillen, 1996, Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human. A new member of the cation-chloride cotransporter family, J. Biol. Chem., 271, 16237, 10.1074/jbc.271.27.16237 Saitsu, 2016, Impaired neuronal KCC2 function by biallelic SLC12A5 mutations in migrating focal seizures and severe developmental delay, Sci. Rep., 6, 10.1038/srep30072 Stödberg, 2015, Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures, Nat. Commun., 6, 8038, 10.1038/ncomms9038 Kahle, 2014, Genetically encoded impairment of neuronal KCC2 cotransporter function in human idiopathic generalized epilepsy, EMBO Rep., 15, 766, 10.15252/embr.201438840 Puskarjov, 2014, A variant of KCC2 from patients with febrile seizures impairs neuronal Cl− extrusion and dendritic spine formation, EMBO Rep., 15, 723, 10.1002/embr.201438749 Campbell, 2015, GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy, Glia, 63, 23, 10.1002/glia.22730 Kosmicki, 2017, Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples, Nat. Genet., 49, 504, 10.1038/ng.3789 Merner, 2015, Regulatory domain or CpG site variation in SLC12A5, encoding the chloride transporter KCC2, in human autism and schizophrenia, Front. Cell. Neurosci., 9, 386, 10.3389/fncel.2015.00386 Payne, 1996, Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform, J. Biol. Chem., 271, 16245, 10.1074/jbc.271.27.16245 Antoniadi, 2015, Application of targeted multi-gene panel testing for the diagnosis of inherited peripheral neuropathy provides a high diagnostic yield with unexpected phenotype-genotype variability, BMC Med. Genet., 16, 84, 10.1186/s12881-015-0224-8 Uyanik, 2006, Novel truncating and missense mutations of the KCC3 gene associated with Andermann syndrome, Neurology, 66, 1044, 10.1212/01.wnl.0000204181.31175.8b Kahle, 2016, Peripheral motor neuropathy is associated with defective kinase regulation of the KCC3 cotransporter, Sci. Signal., 9, ra77, 10.1126/scisignal.aae0546 Lourenço, 2012, Expanding the differential diagnosis of inherited neuropathies with non-uniform conduction: Andermann syndrome, J. Peripher. Nerv. Syst., 17, 123, 10.1111/j.1529-8027.2012.00374.x Hou, 2020, Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging, Proc. Natl. Acad. Sci. U S A, 117, 3053, 10.1073/pnas.1909378117 Shekarabi, 2012, Loss of neuronal potassium/chloride cotransporter 3 (KCC3) is responsible for the degenerative phenotype in a conditional mouse model of hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum, J. Neurosci., 32, 3865, 10.1523/JNEUROSCI.3679-11.2012 Hiki, 1999, Cloning, characterization, and chromosomal location of a novel human K+-Cl− cotransporter, J. Biol. Chem., 274, 10661, 10.1074/jbc.274.15.10661 Race, 1999, Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter, Am. J. Physiol., 277, C1210, 10.1152/ajpcell.1999.277.6.C1210 Mount, 1999, Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family, J. Biol. Chem., 274, 16355, 10.1074/jbc.274.23.16355 Takata, 2019, Comprehensive analysis of coding variants highlights genetic complexity in developmental and epileptic encephalopathy, Nat. Commun., 10, 2506, 10.1038/s41467-019-10482-9 Jin, 2019, SLC12A ion transporter mutations in sporadic and familial human congenital hydrocephalus, Mol. Genet. Genomic Med., 7, e892, 10.1002/mgg3.892 Hewett, 2002, Identification of a psoriasis susceptibility candidate gene by linkage disequilibrium mapping with a localized single nucleotide polymorphism map, Genomics, 79, 305, 10.1006/geno.2002.6720 Edwards, 2020, Systems analysis implicates WAVE2 complex in the pathogenesis of developmental left-sided obstructive heart defects, JACC Basic Transl. Sci., 5, 376, 10.1016/j.jacbts.2020.01.012 Mount, 1999, Isoforms of the Na-K-2Cl cotransporter in murine TAL I. Molecular characterization and intrarenal localization, Am. J. Physiol., 276, F347 Simon, 1996, Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2, Nat. Genet., 13, 183, 10.1038/ng0696-183 Robert, 2023, The choroid plexus links innate immunity to CSF dysregulation in hydrocephalus, Cell, 186, 764, 10.1016/j.cell.2023.01.017 Zhang, 2023, 1 Brown, 2015, Activation of the erythroid K-Cl cotransporter Kcc1 enhances sickle cell disease pathology in a humanized mouse model, Blood, 126, 2863, 10.1182/blood-2014-10-609362 Vu, 2000, Localization and developmental expression patterns of the neuronal K-Cl cotransporter (KCC2) in the rat retina, J. Neurosci., 20, 1414, 10.1523/JNEUROSCI.20-04-01414.2000 Heubl, 2017, GABAA receptor dependent synaptic inhibition rapidly tunes KCC2 activity via the Cl−-sensitive WNK1 kinase, Nat. Commun., 8, 1776, 10.1038/s41467-017-01749-0 Watanabe, 2019, Developmentally regulated KCC2 phosphorylation is essential for dynamic GABA-mediated inhibition and survival, Sci. Signal., 12, eaaw9315, 10.1126/scisignal.aaw9315 Salihu, 2021, Role of the cation-chloride-cotransporters in the circadian system, Asian J. Pharm. Sci., 16, 589, 10.1016/j.ajps.2020.10.003 Shimizu-Okabe, 2022, Specific expression of KCC2 in the α cells of normal and type 1 diabetes model mouse pancreatic islets, Acta Histochem. Cytochem., 55, 47, 10.1267/ahc.21-00078 Kursan, 2017, The neuronal K+Cl− co-transporter 2 (Slc12a5) modulates insulin secretion, Sci. Rep., 7, 1732, 10.1038/s41598-017-01814-0 Howard, 2002, The K-Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum, Nat. Genet., 32, 384, 10.1038/ng1002 Rius, 2018, Identification of a novel SLC12A6 pathogenic variant associated with hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC) in a non-French-Canadian family, Neurol. India, 66, 1162, 10.4103/0028-3886.236987 Muñoz, 2017, Andermann syndrome in a Pakistani family caused by a novel mutation in SLC12A6, J. Pediatr. Neurol., 15, 90, 10.1055/s-0037-1599831 Boettger, 2002, Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4, Nature, 416, 874, 10.1038/416874a Daigle, 2009, Molecular characterization of a human cation-Cl- cotransporter (SLC12A8A, CCC9A) that promotes polyamine and amino acid transport, J. Cell. Physiol., 220, 680, 10.1002/jcp.21814 Wenz, 2009, CIP1 is an activator of the K+-Cl− cotransporter KCC2, Biochem. Biophys. Res. Commun., 381, 388, 10.1016/j.bbrc.2009.02.057 Rivera, 1999, The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation, Nature, 397, 251, 10.1038/16697 Bertoni, 2021, Oxytocin administration in neonates shapes hippocampal circuitry and restores social behavior in a mouse model of autism, Mol. Psychiatry, 26, 7582, 10.1038/s41380-021-01227-6 Kahle, 2016, Inhibition of the kinase WNK1/HSN2 ameliorates neuropathic pain by restoring GABA inhibition, Sci. Signal., 9, ra32, 10.1126/scisignal.aad0163 Belaïdouni, 2021, The chloride homeostasis of CA3 hippocampal neurons is not altered in fully symptomatic Mepc2-null mice, Front. Cell. Neurosci., 15, 10.3389/fncel.2021.724976 Galeffi, 2004, Changes in intracellular chloride after oxygen-glucose deprivation of the adult hippocampal slice: Effect of diazepam, J. Neurosci., 24, 4478, 10.1523/JNEUROSCI.0755-04.2004 Papp, 2008, Relationship between neuronal vulnerability and potassium-chloride cotransporter 2 immunoreactivity in hippocampus following transient forebrain ischemia, Neuroscience, 154, 677, 10.1016/j.neuroscience.2008.03.072 Wang, 2017, NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility, Brain Struct. Funct., 222, 1543, 10.1007/s00429-016-1292-z Brandt, 2010, Disease-modifying effects of phenobarbital and the NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy, J. Neurosci., 30, 8602, 10.1523/JNEUROSCI.0633-10.2010 Gong, 2021, Inhibition of the NKCC1/NF-κB signaling pathway decreases inflammation and improves brain edema and nerve cell apoptosis in an SBI rat model, Front. Mol. Neurosci., 14, 10.3389/fnmol.2021.641993 Wang, 2022, Role of SPAK-NKCC1 signaling cascade in the choroid plexus blood-CSF barrier damage after stroke, J. Neuroinflammation, 19, 91, 10.1186/s12974-022-02456-4 Karimy, 2017, Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus, Nat. Med., 23, 997, 10.1038/nm.4361 Zhang, 2017, Inhibition of Na+-K+-2Cl− cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury, Neurochem. Int., 111, 23, 10.1016/j.neuint.2017.05.020 Chen, 2014, Increased spinal cord Na+-K+-2Cl− cotransporter-1 (NKCC1) activity contributes to impairment of synaptic inhibition in paclitaxel-induced neuropathic pain, J. Biol. Chem., 289, 31111, 10.1074/jbc.M114.600320 Wu, 2023, Inhibition of NKCC1 in spinal dorsal horn and dorsal root ganglion results in alleviation of neuropathic pain in rats with spinal cord contusion, Mol. Pain, 19, 10.1177/17448069231159855 Michea, 2001, Reduced Na-K pump but increased Na-K-2Cl cotransporter in aorta of streptozotocin-induced diabetic rat, Am. J. Physiol. Heart Circ. Physiol., 280, H851, 10.1152/ajpheart.2001.280.2.H851 Ji, 2019, Enhanced activity by NKCC1 and Slc26a6 mediates acidic pH and Cl− movement after cardioplegia-induced arrest of db/db diabetic heart, Mediators Inflamm., 2019, 10.1155/2019/7583760 Koltsova, 2009, Excitation-contraction coupling in resistance mesenteric arteries: Evidence for NKCC1-mediated pathway, Biochem. Biophys. Res. Commun., 379, 1080, 10.1016/j.bbrc.2009.01.018 Di Fulvio, 2001, Protein kinase G regulates potassium chloride cotransporter-4 [corrected] expression in primary cultures of rat vascular smooth muscle cells, J. Biol. Chem., 276, 21046, 10.1074/jbc.M100901200 Garneau, 2016, Ablation of potassium-chloride cotransporter type 3 (Kcc3) in mouse causes multiple cardiovascular defects and isosmotic polyuria, PLoS One, 11, 10.1371/journal.pone.0154398 Di Fulvio, 2003, NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells, Am. J. Physiol. Heart Circ. Physiol., 284, H1686, 10.1152/ajpheart.00710.2002 Zhang, 2003, Platelet-derived growth factor regulates K-Cl cotransport in vascular smooth muscle cells, Am. J. Physiol. Cell Physiol., 284, C674, 10.1152/ajpcell.00312.2002 Wilson, 2001, Human hypertension caused by mutations in WNK kinases, Science, 293, 1107, 10.1126/science.1062844 Boyden, 2012, Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities, Nature, 482, 98, 10.1038/nature10814 Castañeda-Bueno, 2012, Activation of the renal Na+:Cl− cotransporter by angiotensin II is a WNK4-dependent process, Proc. Natl. Acad. Sci. U S A, 109, 7929, 10.1073/pnas.1200947109 Schumacher, 2015, Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia, EMBO Mol. Med., 7, 1285, 10.15252/emmm.201505444 Ostrosky-Frid, 2021, Role of KLHL3 and dietary K+ in regulating KS-WNK1 expression, Am. J. Physiol. Renal Physiol., 320, F734, 10.1152/ajprenal.00575.2020 Takahashi, 2014, WNK4 is the major WNK positively regulating NCC in the mouse kidney, Biosci. Rep., 34, 10.1042/BSR20140047 Zhang, 2015, Critical role of the SPAK protein kinase CCT domain in controlling blood pressure, Hum. Mol. Genet., 24, 4545, 10.1093/hmg/ddv185 Yamada, 2016, Small-molecule WNK inhibition regulates cardiovascular and renal function, Nat. Chem. Biol., 12, 896, 10.1038/nchembio.2168 Meor Azlan, 2020, Role of the cation-chloride-cotransporters in cardiovascular disease, Cells, 9, 2293, 10.3390/cells9102293 Panet, 2000, Overexpression of the Na+/K+/Cl− cotransporter gene induces cell proliferation and phenotypic transformation in mouse fibroblasts, J. Cell. Physiol., 182, 109, 10.1002/(SICI)1097-4652(200001)182:1<109::AID-JCP12>3.0.CO;2-A Sun, 2016, Expression of Na+-K+-2Cl− cotransporter isoform 1 (NKCC1) predicts poor prognosis in lung adenocarcinoma and EGFR-mutated adenocarcinoma patients, QJM, 109, 237, 10.1093/qjmed/hcv207 Wang, 2021, NKCC1 promotes proliferation, invasion and migration in human gastric cancer cells via activation of the MAPK-JNK/EMT signaling pathway, J. Cancer, 12, 253, 10.7150/jca.49709 Hiraoka, 2010, Chloride ion modulates cell proliferation of human androgen-independent prostatic cancer cell, Cell. Physiol. Biochem., 25, 379, 10.1159/000303042 Shiozaki, 2014, Role of the Na+/K+/2Cl− cotransporter NKCC1 in cell cycle progression in human esophageal squamous cell carcinoma, World J. Gastroenterol., 20, 6844, 10.3748/wjg.v20.i22.6844 Luo, 2020, Blockade of cell volume regulatory protein NKCC1 increases TMZ-induced glioma apoptosis and reduces astrogliosis, Mol. Cancer Ther., 19, 1550, 10.1158/1535-7163.MCT-19-0910 Zhang, 2009, The up-regulation of KCC1 gene expression in cervical cancer cells by IGF-II through the ERK1/2MAPK and PI3K/AKT pathways and its significance, Eur. J. Gynaecol. Oncol., 30, 29 Kajiya, 2006, Expression of mouse osteoclast K-Cl Co-transporter-1 and its role during bone resorption, J. Bone Miner. Res., 21, 984, 10.1359/jbmr.060407 Shen, 2001, The KCl cotransporter isoform KCC3 can play an important role in cell growth regulation, Proc. Natl. Acad. Sci. U S A, 98, 14714, 10.1073/pnas.251388798 Rust, 2007, Disruption of erythroid K-Cl cotransporters alters erythrocyte volume and partially rescues erythrocyte dehydration in SAD mice, J. Clin. Invest., 117, 1708, 10.1172/JCI30630 Clemo, 1992, Modulation of rabbit ventricular cell volume and Na+/K+/2Cl− cotransport by cGMP and atrial natriuretic factor, J. Gen. Physiol., 100, 89, 10.1085/jgp.100.1.89 Gamba, 2005, Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters, Physiol. Rev., 85, 423, 10.1152/physrev.00011.2004 Okada, 2004, Ion channels and transporters involved in cell volume regulation and sensor mechanisms, Cell Biochem. Biophys., 41, 233, 10.1385/CBB:41:2:233 Zhao, 2018, Molecular characterization of Na+/K+/2Cl− cotransporter 1 alpha from Trachinotus ovatus (Linnaeus, 1758) and its expression responses to acute salinity stress, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 223, 29, 10.1016/j.cbpb.2018.05.003 Alexander, 2006, Na+/H+ exchangers and the regulation of volume, Acta Physiol. (Oxf.), 187, 159, 10.1111/j.1748-1716.2006.01558.x Grinstein, 1983, Activation of Na+/H+ exchange in lymphocytes by osmotically induced volume changes and by cytoplasmic acidification, J. Gen. Physiol., 82, 619, 10.1085/jgp.82.5.619 Song, 2014, Ionic regulation of cell volume changes and cell death after ischemic stroke, Transl. Stroke Res., 5, 17, 10.1007/s12975-013-0314-x Qusous, 2011, siRNA-mediated inhibition of Na+-K+-2Cl− cotransporter (NKCC1) and regulatory volume increase in the chondrocyte cell line C-20/A4, J. Membr. Biol., 243, 25, 10.1007/s00232-011-9389-z Adragna, 2015, Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis, Front. Cell. Neurosci., 9, 255, 10.3389/fncel.2015.00255 Tejada, 2014, Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels, PLoS One, 9, 10.1371/journal.pone.0110833 Sforna, 2022, Piezo1 controls cell volume and migration by modulating swelling-activated chloride current through Ca2+ influx, J. Cell. Physiol., 237, 1857, 10.1002/jcp.30656 Hoffmann, 2009, Physiology of cell volume regulation in vertebrates, Physiol. Rev., 89, 193, 10.1152/physrev.00037.2007 de Los Heros, 2014, The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl− co-transporters, Biochem. J., 458, 559, 10.1042/BJ20131478 Richardson, 2008, Activation of the thiazide-sensitive Na+-Cl− cotransporter by the WNK-regulated kinases SPAK and OSR1, J. Cell Sci., 121, 675, 10.1242/jcs.025312 Kahle, 2005, WNK3 modulates transport of Cl− in and out of cells: Implications for control of cell volume and neuronal excitability, Proc. Natl. Acad. Sci. U S A, 102, 16783, 10.1073/pnas.0508307102 Boyd-Shiwarski, 2022, WNK kinases sense molecular crowding and rescue cell volume via phase separation, Cell, 185, 4488, 10.1016/j.cell.2022.09.042 Zhang, 2020, Modulation of brain cation-Cl− cotransport via the SPAK kinase inhibitor ZT-1a, Nat. Commun., 11, 78, 10.1038/s41467-019-13851-6 Bildin, 2003, Hypertonicity-induced p38MAPK activation elicits recovery of corneal epithelial cell volume and layer integrity, J. Membr. Biol., 193, 1, 10.1007/s00232-002-2002-8 Scepanovic, 2021, p38-mediated cell growth and survival drive rapid embryonic wound repair, Cell Rep., 37, 10.1016/j.celrep.2021.109874 Mòdol, 2015, NKCC1 activation is required for myelinated sensory neurons regeneration through JNK-dependent pathway, J. Neurosci., 35, 7414, 10.1523/JNEUROSCI.4079-14.2015 Hoffmann, 2007, Shrinkage insensitivity of NKCC1 in myosin II-depleted cytoplasts from Ehrlich ascites tumor cells, Am. J. Physiol. Cell Physiol., 292, C1854, 10.1152/ajpcell.00474.2006 Demian, 2019, The ion transporter NKCC1 links cell volume to cell mass regulation by suppressing mTORC1, Cell Rep., 27, 1886, 10.1016/j.celrep.2019.04.034 Serra, 2021, LRRC8A-containing chloride channel is crucial for cell volume recovery and survival under hypertonic conditions, Proc. Natl. Acad. Sci. U S A, 118, 10.1073/pnas.2025013118 Model, 2018, Methods for cell volume measurement, Cytometry A, 93, 281, 10.1002/cyto.a.23152 Mizutani, 2005, Myocyte volume and function in response to osmotic stress: Observations in the presence of an adenosine triphosphate-sensitive potassium channel opener, Circulation, 112, I219, 10.1161/CIRCULATIONAHA.104.523746 Liu, 2018, Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length, Elife, 7, 10.7554/eLife.26947 Munns, 2010, Measuring soluble ion concentrations (Na+, K+, Cl−) in salt-treated plants, 371 Haas, 1994, The Na-K-Cl cotransporters, Am. J. Physiol., 267, C869, 10.1152/ajpcell.1994.267.4.C869 Bazúa-Valenti, 2018, The calcium-sensing receptor increases activity of the renal NCC through the WNK4-SPAK pathway, J. Am. Soc. Nephrol., 29, 1838, 10.1681/ASN.2017111155 Gesek, 1992, Mechanism of calcium transport stimulated by chlorothiazide in mouse distal convoluted tubule cells, J. Clin. Invest., 90, 429, 10.1172/JCI115878 Hoover, 2003, N-Glycosylation at two sites critically alters thiazide binding and activity of the rat thiazide-sensitive Na+:Cl− cotransporter, J. Am. Soc. Nephrol., 14, 271, 10.1097/01.ASN.0000043903.93452.D0 Gamba, 2012, Regulation of the renal Na+-Cl− cotransporter by phosphorylation and ubiquitylation, Am. J. Physiol. Renal Physiol., 303, F1573, 10.1152/ajprenal.00508.2012 Rosenbaek, 2017, Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells, Am. J. Physiol. Renal Physiol., 313, F495, 10.1152/ajprenal.00088.2017 Terstappen, 2004, Nonradioactive rubidium ion efflux assay and its applications in drug discovery and development, Assay Drug Dev. Technol., 2, 553, 10.1089/adt.2004.2.553 Williams, 2004, Cation transport by the neuronal K+-Cl− cotransporter KCC2: Thermodynamics and kinetics of alternate transport modes, Am. J. Physiol. Cell Physiol., 287, C919, 10.1152/ajpcell.00005.2004 Chorin, 2011, Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor, J. Neurosci., 31, 12916, 10.1523/JNEUROSCI.2205-11.2011 Titz, 2006, Intracellular acidification in neurons induced by ammonium depends on KCC2 function, Eur. J. Neurosci., 23, 454, 10.1111/j.1460-9568.2005.04583.x Hershfinkel, 2009, Intracellular zinc inhibits KCC2 transporter activity, Nat. Neurosci., 12, 725, 10.1038/nn.2316 Vizvári, 2016, Characterization of Na+-K+-2Cl− cotransporter activity in rabbit lacrimal gland duct cells, Invest. Ophthalmol. Vis. Sci., 57, 3828, 10.1167/iovs.15-18462 Heitzmann, 2000, Regulation of the Na+2Cl−K+ cotransporter in isolated rat colon crypts, Pflugers Arch., 439, 378 Kidokoro, 2014, Na(+)-K(+)-2Cl(−) cotransporter-mediated fluid secretion increases under hypotonic osmolarity in the mouse submandibular salivary gland, Am. J. Physiol. Renal Physiol., 306, F1155, 10.1152/ajprenal.00709.2012 Medina, 2014, Current view on the functional regulation of the neuronal K+-Cl− cotransporter KCC2, Front. Cell. Neurosci., 8, 27, 10.3389/fncel.2014.00027 Terstappen, 2011, Nonradioactive rubidium efflux assay technology for screening of ion channels, 111 Carmosino, 2013, High-throughput fluorescent-based NKCC functional assay in adherent epithelial cells, BMC Cell Biol., 14, 16, 10.1186/1471-2121-14-16 Titus, 2009, A new homogeneous high-throughput screening assay for profiling compound activity on the human ether-a-go-go-related gene channel, Anal. Biochem., 394, 30, 10.1016/j.ab.2009.07.003 Beacham, 2010, Cell-based potassium ion channel screening using the FluxOR assay, J. Biomol. Screen., 15, 441, 10.1177/1087057109359807 Delpire, 2009, Small-molecule screen identifies inhibitors of the neuronal K-Cl cotransporter KCC2, Proc. Natl. Acad. Sci. U S A, 106, 5383, 10.1073/pnas.0812756106 Zhang, 2010, A thallium transport FLIPR-based assay for the identification of KCC2-positive modulators, J. Biomol. Screen., 15, 177, 10.1177/1087057109355708 Zhang, 2021, The structural basis of function and regulation of neuronal cotransporters NKCC1 and KCC2, Commun. Biol., 4, 226, 10.1038/s42003-021-01750-w Yu, 2016, High throughput screening technologies for ion channels, Acta Pharmacol. Sin., 37, 34, 10.1038/aps.2015.108 Hill, 2021, An introduction to patch clamp recording, Methods Mol. Biol., 2188, 1, 10.1007/978-1-0716-0818-0_1 Lee, 2011, NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor-mediated currents, Nat. Neurosci., 14, 736, 10.1038/nn.2806 Woodin, 2003, Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl− transporter activity, Neuron, 39, 807, 10.1016/S0896-6273(03)00507-5 Friedel, 2015, WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons, Sci. Signal., 8, ra65, 10.1126/scisignal.aaa0354 Cardarelli, 2017, The small molecule CLP257 does not modify activity of the K+-Cl− co-transporter KCC2 but does potentiate GABAA receptor activity, Nat. Med., 23, 1394, 10.1038/nm.4442 Lee, 2022, Inhibiting with-no-lysine kinases enhances K+/Cl− cotransporter 2 activity and limits status epilepticus, Brain, 145, 950, 10.1093/brain/awab343 Ebihara, 1995, Gramicidin-perforated patch recording: GABA response in mammalian neurones with intact intracellular chloride, J. Physiol., 484, 77, 10.1113/jphysiol.1995.sp020649 Lamsa, 2000, Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus, J. Neurophysiol., 83, 359, 10.1152/jn.2000.83.1.359 Kyrozis, 1995, Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration, J. Neurosci. Methods, 57, 27, 10.1016/0165-0270(94)00116-X Lytle, 1996, Regulatory phosphorylation of the secretory Na-K-Cl cotransporter: Modulation by cytoplasmic Cl, Am. J. Physiol., 270, C437, 10.1152/ajpcell.1996.270.2.C437 Darman, 2002, A regulatory locus of phosphorylation in the N terminus of the Na-K-Cl cotransporter, NKCC1, J. Biol. Chem., 277, 37542, 10.1074/jbc.M206293200 Mann, 2002, Analysis of protein phosphorylation using mass spectrometry: Deciphering the phosphoproteome, Trends Biotechnol., 20, 261, 10.1016/S0167-7799(02)01944-3 Pitt, 2009, Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry, Clin. Biochem. Rev., 30, 19 S.B. Breitkopf, J.M. Asara, Determining in vivo phosphorylation sites using mass spectrometry, Curr. Protoc. Mol. Biol. Chapter 2012. https://doi.org/10.1002/0471142727.mb1819s98. Feric, 2011, Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule, Am. J. Physiol. Cell Physiol., 300, C755, 10.1152/ajpcell.00360.2010 R.L. Gundry, M.Y. White, C.I. Murray, et al., Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow, Curr. Protoc. Mol. Biol. Chapter 2009. https://doi.org/10.1002/0471142727.mb1025s88. Richardson, 2011, Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways, J. Cell Sci., 124, 789, 10.1242/jcs.077230 Gunaratne, 2010, Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells, Proc. Natl. Acad. Sci. U S A, 107, 15653, 10.1073/pnas.1007424107 Vitari, 2006, Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1, Biochem. J., 397, 223, 10.1042/BJ20060220 Sid, 2010, Stimulation of human and mouse erythrocyte Na+-K+-2Cl− cotransport by osmotic shrinkage does not involve AMP-activated protein kinase, but is associated with STE20/SPS1-related proline/alanine-rich kinase activation, J. Physiol., 588, 2315, 10.1113/jphysiol.2009.185900 Smalley, 2020, Isolation and characterization of multi-protein complexes enriched in the K-Cl co-transporter 2 from brain plasma membranes, Front. Mol. Neurosci., 13, 10.3389/fnmol.2020.563091 Rinehart, 2009, Sites of regulated phosphorylation that control K-Cl cotransporter activity, Cell, 138, 525, 10.1016/j.cell.2009.05.031 Melo, 2013, N-terminal serine dephosphorylation is required for KCC3 cotransporter full activation by cell swelling, J. Biol. Chem., 288, 31468, 10.1074/jbc.M113.475574 Anselmo, 2006, WNK1 and OSR1 regulate the Na+, K+, 2Cl− cotransporter in HeLa cells, Proc. Natl. Acad. Sci. U S A, 103, 10883, 10.1073/pnas.0604607103 Zagórska, 2007, Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress, J. Cell Biol., 176, 89, 10.1083/jcb.200605093 Lagnaz, 2014, WNK3 abrogates the NEDD4-2-mediated inhibition of the renal Na+-Cl− cotransporter, Am. J. Physiol. Renal Physiol., 307, F275, 10.1152/ajprenal.00574.2013 Zhang, 2016, Functional kinomics establishes a critical node of volume-sensitive cation-Cl− cotransporter regulation in the mammalian brain, Sci. Rep., 6 Johansen, 1998, Immunoprecipitation, Methods Mol. Med., 13, 15 Conway, 2017, N-Ethylmaleimide increases KCC2 cotransporter activity by modulating transporter phosphorylation, J. Biol. Chem., 292, 21253, 10.1074/jbc.M117.817841 Mahmood, 2012, Western blot: Technique, theory, and trouble shooting, N. Am. J. Med. Sci., 4, 429, 10.4103/1947-2714.100998 Klein, 1995, Volume-sensitive myosin phosphorylation in vascular endothelial cells: Correlation with Na-K-2Cl cotransport, Am. J. Physiol., 269, C1524, 10.1152/ajpcell.1995.269.6.C1524 Matthews, 1994, Na-K-2Cl cotransport in intestinal epithelial cells. Influence of chloride efflux and F-actin on regulation of cotransporter activity and bumetanide binding, J. Biol. Chem., 269, 15703, 10.1016/S0021-9258(17)40738-1 Liu, 2020, Explicit representation of protein activity states significantly improves causal discovery of protein phosphorylation networks, BMC Bioinformatics, 21, 379, 10.1186/s12859-020-03676-2 Hannemann, 2011, Phosphorylation and transport in the Na-K-2Cl cotransporters, NKCC1 and NKCC2A, compared in HEK-293 cells, PLoS One, 6, 10.1371/journal.pone.0017992 Hannemann, 2009, Functional expression of the Na-K-2Cl cotransporter NKCC2 in mammalian cells fails to confirm the dominant-negative effect of the AF splice variant, J. Biol. Chem., 284, 35348, 10.1074/jbc.M109.060004 Blaesse, 2006, Oligomerization of KCC2 correlates with development of inhibitory neurotransmission, J. Neurosci., 26, 10407, 10.1523/JNEUROSCI.3257-06.2006 Virtanen, 2021, The multifaceted roles of KCC2 in cortical development, Trends Neurosci., 44, 378, 10.1016/j.tins.2021.01.004 Friedel, 2017, A novel view on the role of intracellular tails in surface delivery of the potassium-chloride cotransporter KCC2, eNeuro, 10.1523/ENEURO.0055-17.2017 Josiah, 2022, Study of the functions and activities of neuronal K-Cl co-transporter KCC2 using western blotting, J. Vis. Exp., 10.3791/64179 Miller, 1995, Ion-selective microelectrodes for measurement of intracellular ion concentrations, Methods Cell Biol., 49, 275, 10.1016/S0091-679X(08)61460-0 Keynes, 1963, Chloride in the squid giant axon, J. Physiol., 169, 690, 10.1113/jphysiol.1963.sp007289 Strickholm, 1965, Intracellular chloride activity of crayfish giant axons, Nature, 208, 790, 10.1038/208790a0 Neild, 1974, Intracellular chloride activity and the effects of acetylcholine in snail neurones, J. Physiol., 242, 453, 10.1113/jphysiol.1974.sp010717 Walker, 1971, Ion specific liquid ion exchanger microelectrodes, Anal. Chem., 43, 89A, 10.1021/ac60298a780 Bregestovski, 2009, Genetically encoded optical sensors for monitoring of intracellular chloride and chloride-selective channel activity, Front. Mol. Neurosci., 2, 15, 10.3389/neuro.02.015.2009 Vereninov, 2008, Pump and channel K (Rb+) fluxes in apoptosis of human lymphoid cell line U937, Cell. Physiol. Biochem., 22, 187, 10.1159/000149796 Ludwig, 2017, A noninvasive optical approach for assessing chloride extrusion activity of the K-Cl cotransporter KCC2 in neuronal cells, BMC Neurosci., 18, 23, 10.1186/s12868-017-0336-5 Yurinskaya, 2019, A tool for computation of changes in Na+, K+, Cl− channels and transporters due to apoptosis by data on cell ion and water content alteration, Front. Cell Dev. Biol., 7, 58, 10.3389/fcell.2019.00058 Kovalchuk, 2012, Two-photon chloride imaging using MQAE in vitro and in vivo, Cold Spring Harb. Protoc., 2012, 778, 10.1101/pdb.prot070037 Engels, 2021, Glial chloride homeostasis under transient ischemic stress, Front. Cell. Neurosci., 15, 10.3389/fncel.2021.735300 Park, 2020, Mitochondrial Cl−-selective fluorescent probe for biological applications, Anal. Chem., 92, 12116, 10.1021/acs.analchem.0c02658 Savardi, 2020, Discovery of a small molecule drug candidate for selective NKCC1 inhibition in brain disorders, Chem, 6, 2073, 10.1016/j.chempr.2020.06.017 Dzhala, 2005, NKCC1 transporter facilitates seizures in the developing brain, Nat. Med., 11, 1205, 10.1038/nm1301 Chamma, 2013, Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons, J. Neurosci., 33, 15488, 10.1523/JNEUROSCI.5889-12.2013 Valdez-Flores, 2016, Functionomics of NCC mutations in Gitelman syndrome using a novel mammalian cell-based activity assay, Am. J. Physiol. Renal Physiol., 311, F1159, 10.1152/ajprenal.00124.2016 Gagnon, 2013, Chloride extrusion enhancers as novel therapeutics for neurological diseases, Nat. Med., 19, 1524, 10.1038/nm.3356 Ponomareva, 2021, Simultaneous monitoring of pH and chloride (Cl−) in brain slices of transgenic mice, Int. J. Mol. Sci., 22, 10.3390/ijms222413601 Davidov, 1967, Antihypertensive properties of furosemide, Circulation, 36, 125, 10.1161/01.CIR.36.1.125 Asbury, 1972, Bumetanide: Potent new “loop” diuretic, Br. Med. J., 1, 211, 10.1136/bmj.1.5794.211 Orlov, 2015, NKCC1 and NKCC2: The pathogenetic role of cation-chloride cotransporters in hypertension, Genes Dis., 2, 186, 10.1016/j.gendis.2015.02.007 Hampel, 2018, Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium-potassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B, Sci. Rep., 8, 9877, 10.1038/s41598-018-27995-w Savardi, 2023, Preclinical development of the Na-K-2Cl co-transporter-1 (NKCC1) inhibitor ARN23746 for the treatment of neurodevelopmental disorders, ACS Pharmacol. Transl. Sci., 6, 1, 10.1021/acsptsci.2c00197 Pégurier, 2010, Benzyl prolinate derivatives as novel selective KCC2 blockers, Bioorg. Med. Chem. Lett., 20, 2542, 10.1016/j.bmcl.2010.02.092 Deisz, 2014, Effects of VU0240551, a novel KCC2 antagonist, and DIDS on chloride homeostasis of neocortical neurons from rats and humans, Neuroscience, 277, 831, 10.1016/j.neuroscience.2014.07.037 Garay, 1988, Demonstration of a [K+,Cl−]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: Regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl−]-cotransport system, Mol. Pharmacol., 33, 696 Jarvis, 2023, Direct activation of KCC2 arrests benzodiazepine refractory status epilepticus and limits the subsequent neuronal injury in mice, Cell Rep. Med., 4 Luo, 2020, Role of NKCC1 activity in glioma K+ homeostasis and cell growth: New insights with the bumetanide-derivative STS66, Front. Physiol., 11, 911, 10.3389/fphys.2020.00911 Ferrini, 2017, Enhancing KCC2 function counteracts morphine-induced hyperalgesia, Sci. Rep., 7, 3870, 10.1038/s41598-017-04209-3 Ferando, 2016, Diminished KCC2 confounds synapse specificity of LTP during senescence, Nat. Neurosci., 19, 1197, 10.1038/nn.4357 Delpire, 2012, Further optimization of the K-Cl cotransporter KCC2 antagonist ML077: Development of a highly selective and more potent in vitro probe, Bioorg. Med. Chem. Lett., 22, 4532, 10.1016/j.bmcl.2012.05.126 Lauf, 2008, Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells, Cell. Physiol. Biochem., 21, 335, 10.1159/000129627 Borgogno, 2021, Design, synthesis, in vitro and in vivo characterization of selective NKCC1 inhibitors for the treatment of core symptoms in Down syndrome, J. Med. Chem., 64, 10203, 10.1021/acs.jmedchem.1c00603 Freis, 1958, Treatment of essential hypertension with chlorothiazide (diuril); its use alone and combined with other antihypertensive agents, J. Am. Med. Assoc., 166, 137 Moser, 1959, Chlorothiazide as an adjunct in the treatment of essential hypertension, Am. J. Cardiol., 3, 214, 10.1016/0002-9149(59)90289-9 Ernst, 2009, Use of diuretics in patients with hypertension, N. Engl. J. Med., 361, 2153, 10.1056/NEJMra0907219 Pham, 2023, The use of thiazide diuretics for the treatment of hypertension in patients with advanced chronic kidney disease, Cardiol. Rev., 31, 99, 10.1097/CRD.0000000000000404 Hughes, 2004, How do thiazide and thiazide-like diuretics lower blood pressure?, J. Renin Angiotensin Aldosterone Syst., 5, 155, 10.3317/jraas.2004.034 Ellison, 2009, Thiazide effects and adverse effects: Insights from molecular genetics, Hypertension, 54, 196, 10.1161/HYPERTENSIONAHA.109.129171 Sandberg, 2007, ANG II provokes acute trafficking of distal tubule Na+-Cl− cotransporter to apical membrane, Am. J. Physiol. Renal Physiol., 293, F662, 10.1152/ajprenal.00064.2007 Velázquez, 1986, Effects of diuretic drugs on Na, Cl, and K transport by rat renal distal tubule, Am. J. Physiol., 250, F1013 Schlatter, 1983, Effect of “high ceiling” diuretics on active salt transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Correlation of chemical structure and inhibitory potency, Pflugers Arch., 396, 210, 10.1007/BF00587857 Feit, 1971, Aminobenzoic acid diuretics. 2,4-Substituted-3-amino-5-sulfamylbenzoic acid derivatives, J. Med. Chem., 14, 432, 10.1021/jm00287a014 Tvaermose Nielsen, 1978, Structure-activity relationships of aminobenzoic acid diuretics and related compounds, Vol. 83, 12 Feit, 1990, Bumetanide: historical background, taxonomy and chemistry, 1 Cohen, 1981, Pharmacology of bumetanide, J. Clin. Pharmacol., 21, 537, 10.1002/j.1552-4604.1981.tb05662.x Frizzell, 1979, Sodium-coupled chloride transport by epithelial tissues, Am. J. Physiol., 236, F1 Palfrey, 1980, cAMP-stimulated cation cotransport in avian erythrocytes: Inhibition by “loop” diuretics, Am. J. Physiol., 238, C139, 10.1152/ajpcell.1980.238.3.C139 Flatman, 1999, Regulation of Na+-K+-2Cl− cotransport by protein phosphorylation in ferret erythrocytes, J. Physiol., 517, 699, 10.1111/j.1469-7793.1999.0699s.x Lykke, 2015, Structure-activity relationships of bumetanide derivatives: Correlation between diuretic activity in dogs and inhibition of human NKCC2A transporter, Br. J. Pharmacol., 172, 4469, 10.1111/bph.13231 Blauwblomme, 2018, Transient ischemia facilitates neuronal chloride accumulation and severity of seizures, Ann. Clin. Transl. Neurol., 5, 1048, 10.1002/acn3.617 Dzhala, 2008, Bumetanide enhances phenobarbital efficacy in a neonatal seizure model, Ann. Neurol., 63, 222, 10.1002/ana.21229 Lemonnier, 2010, The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects, Acta Paediatr., 99, 1885, 10.1111/j.1651-2227.2010.01933.x Lemonnier, 2012, A randomised controlled trial of bumetanide in the treatment of autism in children, Transl. Psychiatry, 2, 10.1038/tp.2012.124 Soul, 2021, A pilot randomized, controlled, double-blind trial of bumetanide to treat neonatal seizures, Ann. Neurol., 89, 327, 10.1002/ana.25959 Sprengers, 2021, Bumetanide for core symptoms of autism spectrum disorder (BAMBI): A single center, double-blinded, participant-randomized, placebo-controlled, phase-2 superiority trial, J. Am. Acad. Child Adolesc. Psychiatry, 60, 865, 10.1016/j.jaac.2020.07.888 Töllner, 2014, A novel prodrug-based strategy to increase effects of bumetanide in epilepsy, Ann. Neurol., 75, 550, 10.1002/ana.24124 Brandt, 2018, Bumepamine, a brain-permeant benzylamine derivative of bumetanide, does not inhibit NKCC1 but is more potent to enhance phenobarbital’s anti-seizure efficacy, Neuropharmacology, 143, 186, 10.1016/j.neuropharm.2018.09.025 Huang, 2019, A novel Na+-K+-Cl− cotransporter 1 inhibitor STS66∗ reduces brain damage in mice after ischemic stroke, Stroke, 50, 1021, 10.1161/STROKEAHA.118.024287 Welzel, 2023, The loop diuretic torasemide but not azosemide potentiates the anti-seizure and disease-modifying effects of midazolam in a rat model of birth asphyxia, Epilepsy Behav., 139, 10.1016/j.yebeh.2022.109057 K. Sturm, W. Siedel, R. Weyer, Inventors; Sulphamoylanthranilic acids, FRG patent 1,122,541 (CA 56:14032-33), 1962. Strange, 2000, Dependence of KCC2 K-Cl cotransporter activity on a conserved carboxy terminus tyrosine residue, Am. J. Physiol. Cell Physiol., 279, C860, 10.1152/ajpcell.2000.279.3.C860 Adragna, 2004, Regulation of K-Cl cotransport: From function to genes, J. Membr. Biol., 201, 109, 10.1007/s00232-004-0695-6 Korpi, 1995, Selective antagonist for the cerebellar granule cell-specific gamma-aminobutyric acid type A receptor, Mol. Pharmacol., 47, 283 Reid, 2000, Agents which block potassium-chloride cotransport prevent sound-triggered seizures in post-ischemic audiogenic seizure-prone rats, Brain Res., 864, 134, 10.1016/S0006-8993(00)02121-1 Chen, 2022, Furosemide prevents membrane KCC2 downregulation during convulsant stimulation in the hippocampus, IBRO Neurosci. Rep., 12, 355, 10.1016/j.ibneur.2022.04.010 Lee, 2007, Direct protein kinase C-dependent phosphorylation regulates the cell surface stability and activity of the potassium chloride cotransporter KCC2, J. Biol. Chem., 282, 29777, 10.1074/jbc.M705053200 Sun, 2012, K+-Cl− cotransport mediates the bactericidal activity of neutrophils by regulating NADPH oxidase activation, J. Physiol., 590, 3231, 10.1113/jphysiol.2011.225300 Zhang, 2016, Leveraging unique structural characteristics of WNK kinases to achieve therapeutic inhibition, Sci. Signal., 9, e3, 10.1126/scisignal.aaj2227 Lepault, 1983, Electron microscopy of frozen biological suspensions, J. Microsc., 129, 89, 10.1111/j.1365-2818.1983.tb04163.x Assaiya, 2021, An overview of the recent advances in cryo-electron microscopy for life sciences, Emerg. Top. Life Sci., 5, 151, 10.1042/ETLS20200295 Cressey, 2017, Cryo-electron microscopy wins chemistry Nobel, Nature, 550, 167, 10.1038/nature.2017.22738 Zhao, 2022, Structural basis for inhibition of the Cation-chloride cotransporter NKCC1 by the diuretic drug bumetanide, Nat. Commun., 13, 2747, 10.1038/s41467-022-30407-3 Zhao, 2022, Structure of the human cation-chloride cotransport KCC1 in an outward-open state, Proc. Natl. Acad. Sci. U S A, 119 Yang, 2020, Structure of the human cation-chloride cotransporter NKCC1 determined by single-particle electron cryo-microscopy, Nat. Commun., 11, 1016, 10.1038/s41467-020-14790-3 Zhang, 1999, A simple statistical parameter for use in evaluation and validation of high throughput screening assays, J. Biomol. Screen., 4, 67, 10.1177/108705719900400206 Klein, 2018, Tenuous inhibitory GABAergic signaling in the reticular thalamus, J. Neurosci., 38, 1232, 10.1523/JNEUROSCI.1345-17.2017 Sivakumaran, 2015, Selective inhibition of KCC2 leads to hyperexcitability and epileptiform discharges in hippocampal slices and in vivo, J. Neurosci., 35, 8291, 10.1523/JNEUROSCI.5205-14.2015 Raol, 2020, The role of KCC2 in hyperexcitability of the neonatal brain, Neurosci. Lett., 738, 10.1016/j.neulet.2020.135324 Prael, 2022, Discovery of small molecule KCC2 potentiators which attenuate in vitro seizure-like activity in cultured neurons, Front. Cell Dev. Biol., 10 Grimley, 2013, Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation, J. Neurosci., 33, 16297, 10.1523/JNEUROSCI.4616-11.2013 Gill, 2017, A high-throughput screening assay for NKCC1 cotransporter using nonradioactive rubidium flux technology, Assay Drug Dev. Technol., 15, 167, 10.1089/adt.2017.787 Roy, 2021, In silico identification of potential inhibitors with higher potency than bumetanide targeting NKCC1: An important ion co-transporter to treat neurological disorders, Inform. Med. Unlocked, 27, 10.1016/j.imu.2021.100777