The role of SAXS and molecular simulations in 3D structure elucidation of a DNA aptamer against lung cancer
Tài liệu tham khảo
Baltimore, 2001, Our genome unveiled, Nature, 409, 814, 10.1038/35057267
Kim, 2009, Biogenesis of small RNAs in animals, Nat. Rev. Mol. Cell Biol., 10, 126, 10.1038/nrm2632
Dunn, 2017, Analysis of aptamer discovery and technology, Nat. Rev. Chem., 1, 0076, 10.1038/s41570-017-0076
Chen, 2018, Small RNAs, emerging regulators critical for the development of horticultural traits, Hortic. Res., 5, 63, 10.1038/s41438-018-0072-8
Onoa, 2004, RNA folding and unfolding, Curr. Opin. Struct. Biol., 14, 374, 10.1016/j.sbi.2004.04.001
Rich, 2008
Doudna, 2002, The chemical repertoire of natural ribozymes, Nature, 418, 222, 10.1038/418222a
Sonenberg, 2009, Regulation of translation initiation in eukaryotes: mechanisms and biological targets, Cell, 136, 731, 10.1016/j.cell.2009.01.042
Moore, 2002, The involvement of RNA in ribosome function, Nature, 418, 229, 10.1038/418229a
Wang, 2017, The Beauty and Utility of DNA Origami, Chem, 2, 359, 10.1016/j.chempr.2017.02.009
Bauer, 2019, Anything You Can Do, I Can Do Better: Can Aptamers Replace Antibodies in Clinical Diagnostic Applications?, Molecules, 24, 4377, 10.3390/molecules24234377
Ellington, 1990, In vitro selection of RNA molecules that bind specific ligands, Nature, 346, 818, 10.1038/346818a0
Tuerk, 1990, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249, 505, 10.1126/science.2200121
Tomilin, 2019, Four steps for revealing and adjusting the 3D structure of aptamers in solution by small-angle X-ray scattering and computer simulation, Anal. Bioanal. Chem., 411, 6723, 10.1007/s00216-019-02045-0
Lupu, 2020, Molecular Epitope Determination of Aptamer Complexes of the Multidomain Protein C-Met by Proteolytic Affinity-Mass Spectrometry, ChemMedChem, 15, 363, 10.1002/cmdc.201900489
Adrian, 2012, NMR spectroscopy of G-quadruplexes, Methods, 57, 11, 10.1016/j.ymeth.2012.05.003
Fürtig, 2003, NMR spectroscopy of RNA, ChemBioChem, 4, 936, 10.1002/cbic.200300700
Mao, 2004, NMR structure of the thrombin-binding DNA aptamer stabilized by Sr2+, J. Biomol. Struct. Dyn., 22, 25, 10.1080/07391102.2004.10506977
van Buuren, 2004, NMR spectroscopic determination of the solution structure of a branched nucleic acid from residual dipolar couplings by using isotopically labeled nucleotides, Angew. Chem. Int. Ed. Engl., 43, 187, 10.1002/anie.200351632
van der Werf, 2013, Nucleic acid helix structure determination from NMR proton chemical shifts, J. Biomol. NMR, 56, 95, 10.1007/s10858-013-9725-y
Gong, 2011, Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation, J. Biomol. Struct. Dyn., 29, 403, 10.1080/07391102.2011.10507394
Rhinehardt, 2015, Molecular dynamics simulation analysis of anti-MUC1 aptamer and mucin 1 peptide binding, J. Phys. Chem. B, 119, 6571, 10.1021/acs.jpcb.5b02483
Jeevanandam, 2020, Advancing Aptamers as Molecular Probes for Cancer Theranostic Applications-The Role of Molecular Dynamics Simulation, Biotechnol. J., 15, e1900368, 10.1002/biot.201900368
Zuker, 2003, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res., 31, 3406, 10.1093/nar/gkg595
Owczarzy, 2008, IDT SciTools: a suite for analysis and design of nucleic acid oligomers, Nucleic Acids Res., 36, W163, 10.1093/nar/gkn198
Spiridonova, 2019, DNA Aptamers to Thrombin Exosite I. Structure-Function Relationships and Antithrombotic Effects, Biochemistry (Mosc.), 84, 1521, 10.1134/S0006297919120113
Carothers, 2006, Aptamers selected for higher-affinity binding are not more specific for the target ligand, J. Am. Chem. Soc., 128, 7929, 10.1021/ja060952q
Gevertz, 2005, In vitro RNA random pools are not structurally diverse: a computational analysis, RNA, 11, 853, 10.1261/rna.7271405
Chushak, 2009, In silico selection of RNA aptamers, Nucleic Acids Res., 37, e87, 10.1093/nar/gkp408
Tsai, 2017
Vorobyeva, 2016, Multivalent Aptamers: Versatile Tools for Diagnostic and Therapeutic Applications, Molecules, 21, 1613, 10.3390/molecules21121613
Tanaka, 1999, A′-form RNA double helix in the single crystal structure of r(UGAGCUUCGGCUC), Nucleic Acids Res., 27, 949, 10.1093/nar/27.4.949
Leupin, 1987, Assignment of the 13C nuclear magnetic resonance spectrum of a short DNA-duplex with 1H-detected two-dimensional heteronuclear correlation spectroscopy, Nucleic Acids Res., 15, 267, 10.1093/nar/15.1.267
Martin, 2016, Design of a molecular support for cryo-EM structure determination, Proc. Natl. Acad. Sci. USA, 113, E7456, 10.1073/pnas.1612720113
Ruigrok, 2012, Characterization of aptamer-protein complexes by X-ray crystallography and alternative approaches, Int. J. Mol. Sci., 13, 10537, 10.3390/ijms130810537
Russo Krauss, 2012, High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity, Nucleic Acids Res., 40, 8119, 10.1093/nar/gks512
Lee, 2005, A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165, Proc. Natl. Acad. Sci. USA, 102, 18902, 10.1073/pnas.0509069102
Convery, 1998, Crystal structure of an RNA aptamer-protein complex at 2.8 A resolution, Nat. Struct. Biol., 5, 133, 10.1038/nsb0298-133
Guinier, 1939, La diffraction des rayons X aux très petits angles : application à l’étude de phénomènes ultramicroscopiques, Ann. Phys., 11, 161, 10.1051/anphys/193911120161
Hammel, 2012, Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS), Eur. Biophys. J., 41, 789, 10.1007/s00249-012-0820-x
Rambo, 2013, Super-resolution in solution X-ray scattering and its applications to structural systems biology, Annu. Rev. Biophys., 42, 415, 10.1146/annurev-biophys-083012-130301
Viéville, 2016, Duplex formation and secondary structure of γ-PNA observed by NMR and CD, Biophys. Chem., 210, 9, 10.1016/j.bpc.2015.09.002
Preus, 2012, Advances in quantitative FRET-based methods for studying nucleic acids, ChemBioChem, 13, 1990, 10.1002/cbic.201200400
2019, 1st International Conference “Aptamers in Russia 2019.”, Mol. Ther. Nucleic Acids, 17, 1
Da Vela, 2020, Methods, development and applications of small-angle X-ray scattering to characterize biological macromolecules in solution, Curr. Res. Struct. Biol., 2, 164, 10.1016/j.crstbi.2020.08.004
Larsen, 2020, Combining molecular dynamics simulations with small-angle X-ray and neutron scattering data to study multi-domain proteins in solution, PLoS Comput. Biol., 16, e1007870, 10.1371/journal.pcbi.1007870
Björling, 2015, Deciphering solution scattering data with experimentally guided molecular dynamics simulations, J. Chem. Theory Comput., 11, 780, 10.1021/ct5009735
Bernetti, 2021, Reweighting of molecular simulations with explicit-solvent SAXS restraints elucidates ion-dependent RNA ensembles, Nucleic Acids Res., 10.1093/nar/gkab459
Zamay, 2015, Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood, Mol. Ther., 23, 1486, 10.1038/mt.2015.108
Zamay, 2017, Current and prospective protein biomarkers of lung cancer, Cancers (Basel), 9, 155, 10.3390/cancers9110155
Zamay, 2016, Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples, Sci. Rep., 6, 34350, 10.1038/srep34350
Zuker, 1998, Using reliability information to annotate RNA secondary structures, RNA, 4, 669, 10.1017/S1355838298980116
Waugh, 2002, RNAML: a standard syntax for exchanging RNA information, RNA, 8, 707, 10.1017/S1355838202028017
Blanchet, 2015, Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY), J. Appl. Cryst., 48, 431, 10.1107/S160057671500254X
Graewert, 2020, Adding size exclusion chromatography (SEC) and light scattering (LS) devices to obtain high-quality small angle X-ray scattering (SAXS) data, Crystals, 10, 1, 10.3390/cryst10110975
Panjkovich, 2018, CHROMIXS: automatic and interactive analysis of chromatography-coupled small-angle X-ray scattering data, Bioinformatics, 34, 1944, 10.1093/bioinformatics/btx846
Mertens, 2010, Structural characterization of proteins and complexes using small-angle X-ray solution scattering, J. Struct. Biol., 172, 128, 10.1016/j.jsb.2010.06.012
Gräwert, 2021, Application of small-angle X-ray scattering in studies of biological macromolecules
Manalastas-Cantos, 2021, ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis, J. Appl. Cryst., 54, 343, 10.1107/S1600576720013412
Svergun, 1992, Determination of the regularization parameter in indirect-transform methods using perceptual criteria, J. Appl. Cryst., 25, 495, 10.1107/S0021889892001663
Svergun, 1999, Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing, Biophys. J., 76, 2879, 10.1016/S0006-3495(99)77443-6
Volkov, 2003, Uniqueness of ab initio shape determination in small-angle scattering, J. Appl. Cryst., 36, 860, 10.1107/S0021889803000268
Svergun, 1995, CRYSOL - A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Cryst., 28, 768, 10.1107/S0021889895007047
Knight, 2015, WAXSiS: a web server for the calculation of SAXS/WAXS curves based on explicit-solvent molecular dynamics, Nucleic Acids Res., 43, W225, 10.1093/nar/gkv309
Grudinin, 2017, Pepsi-SAXS: an adaptive method for rapid and accurate computation of small-angle X-ray scattering profiles, Acta Crystallogr. D Struct. Biol., 73, 449, 10.1107/S2059798317005745
Kikhney, 2020, SASBDB: Towards an automatically curated and validated repository for biological scattering data, Protein Sci., 29, 66, 10.1002/pro.3731
Gaus, 2014, Parameterization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications, J. Chem. Theory Comput., 10, 1518, 10.1021/ct401002w
Fedorov, 2017, The fragment molecular orbital method: theoretical development, implementation in GAMESS and applications, WIREs Comput. Mol. Sci., 7, e1322, 10.1002/wcms.1322
Nishimoto, 2014, Density-functional tight-binding combined with the fragment molecular orbital method, J. Chem. Theory Comput., 10, 4801, 10.1021/ct500489d
Nishimoto, 2016, The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model, Phys. Chem. Chem. Phys., 18, 22047, 10.1039/C6CP02186G
Suenaga, 2005, Facio: New Computational Chemistry Environment for PC GAMESS, J. Comput. Chem., 4, 25
Hanwell, 2012, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, J. Cheminform., 4, 17, 10.1186/1758-2946-4-17
Barca, 2020, Recent developments in the general atomic and molecular electronic structure system, J. Chem. Phys., 152, 154102, 10.1063/5.0005188
Abraham, 2015, Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, Softwarex, 1–2, 19, 10.1016/j.softx.2015.06.001
Maier, 2015, ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB, J. Chem. Theory Comput., 11, 3696, 10.1021/acs.jctc.5b00255
Jorgensen, 1983, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926, 10.1063/1.445869
Bussi, 2007, Canonical sampling through velocity rescaling, J. Chem. Phys., 126, 014101, 10.1063/1.2408420
Parrinello, 1981, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Physiol., 52, 7182, 10.1063/1.328693
Hess, 1997, 3 LINCS: a linear constraint solver for molecular simulations, J. Comp. Chem., 18, 1463, 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Essmann, 1995, A smooth particle mesh Ewald method, J. Chem. Phys., 103, 8577, 10.1063/1.470117
Ivani, 2016, Parmbsc1: a refined force field for DNA simulations, Nat. Methods, 13, 55, 10.1038/nmeth.3658
Heyer, 1999, Exploring expression data: identification and analysis of coexpressed genes, Genome Res., 9, 1106, 10.1101/gr.9.11.1106
Debye, 1915, Zerstreuung von Röntgenstrahlen, Ann. Phys., 351, 809, 10.1002/andp.19153510606
Humphrey, 1996, VMD: visual molecular dynamics, J Mol Graph., 14, 33, 10.1016/0263-7855(96)00018-5