The role of SAXS and molecular simulations in 3D structure elucidation of a DNA aptamer against lung cancer

Molecular Therapy - Nucleic Acids - Tập 25 - Trang 316-327 - 2021
Dmitry Morozov1, Vladimir Mironov2, Roman V. Moryachkov3,4, Irina A. Shchugoreva4,5,6, Polina V. Artyushenko4,5,6, Galina S. Zamay4,5, Olga S. Kolovskaya4,5, Tatiana N. Zamay5, Alexey V. Krat5, Dmitry S. Molodenskiy7, Vladimir N. Zabluda3, Dmitry V. Veprintsev5, Alexey E. Sokolov3,4, Ruslan A. Zukov5, Maxim V. Berezovski8, Felix N. Tomilin3,6, Dmitri G. Fedorov9, Yuri Alexeev10, Anna S. Kichkailo4,5
1Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
2Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
3Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
4Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
5Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
6Department of Chemistry, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
7European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
8Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
9Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
10Computational Science Division, Argonne National Laboratory, Lemont, IL, USA

Tài liệu tham khảo

Baltimore, 2001, Our genome unveiled, Nature, 409, 814, 10.1038/35057267 Kim, 2009, Biogenesis of small RNAs in animals, Nat. Rev. Mol. Cell Biol., 10, 126, 10.1038/nrm2632 Dunn, 2017, Analysis of aptamer discovery and technology, Nat. Rev. Chem., 1, 0076, 10.1038/s41570-017-0076 Chen, 2018, Small RNAs, emerging regulators critical for the development of horticultural traits, Hortic. Res., 5, 63, 10.1038/s41438-018-0072-8 Onoa, 2004, RNA folding and unfolding, Curr. Opin. Struct. Biol., 14, 374, 10.1016/j.sbi.2004.04.001 Rich, 2008 Doudna, 2002, The chemical repertoire of natural ribozymes, Nature, 418, 222, 10.1038/418222a Sonenberg, 2009, Regulation of translation initiation in eukaryotes: mechanisms and biological targets, Cell, 136, 731, 10.1016/j.cell.2009.01.042 Moore, 2002, The involvement of RNA in ribosome function, Nature, 418, 229, 10.1038/418229a Wang, 2017, The Beauty and Utility of DNA Origami, Chem, 2, 359, 10.1016/j.chempr.2017.02.009 Bauer, 2019, Anything You Can Do, I Can Do Better: Can Aptamers Replace Antibodies in Clinical Diagnostic Applications?, Molecules, 24, 4377, 10.3390/molecules24234377 Ellington, 1990, In vitro selection of RNA molecules that bind specific ligands, Nature, 346, 818, 10.1038/346818a0 Tuerk, 1990, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249, 505, 10.1126/science.2200121 Tomilin, 2019, Four steps for revealing and adjusting the 3D structure of aptamers in solution by small-angle X-ray scattering and computer simulation, Anal. Bioanal. Chem., 411, 6723, 10.1007/s00216-019-02045-0 Lupu, 2020, Molecular Epitope Determination of Aptamer Complexes of the Multidomain Protein C-Met by Proteolytic Affinity-Mass Spectrometry, ChemMedChem, 15, 363, 10.1002/cmdc.201900489 Adrian, 2012, NMR spectroscopy of G-quadruplexes, Methods, 57, 11, 10.1016/j.ymeth.2012.05.003 Fürtig, 2003, NMR spectroscopy of RNA, ChemBioChem, 4, 936, 10.1002/cbic.200300700 Mao, 2004, NMR structure of the thrombin-binding DNA aptamer stabilized by Sr2+, J. Biomol. Struct. Dyn., 22, 25, 10.1080/07391102.2004.10506977 van Buuren, 2004, NMR spectroscopic determination of the solution structure of a branched nucleic acid from residual dipolar couplings by using isotopically labeled nucleotides, Angew. Chem. Int. Ed. Engl., 43, 187, 10.1002/anie.200351632 van der Werf, 2013, Nucleic acid helix structure determination from NMR proton chemical shifts, J. Biomol. NMR, 56, 95, 10.1007/s10858-013-9725-y Gong, 2011, Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation, J. Biomol. Struct. Dyn., 29, 403, 10.1080/07391102.2011.10507394 Rhinehardt, 2015, Molecular dynamics simulation analysis of anti-MUC1 aptamer and mucin 1 peptide binding, J. Phys. Chem. B, 119, 6571, 10.1021/acs.jpcb.5b02483 Jeevanandam, 2020, Advancing Aptamers as Molecular Probes for Cancer Theranostic Applications-The Role of Molecular Dynamics Simulation, Biotechnol. J., 15, e1900368, 10.1002/biot.201900368 Zuker, 2003, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res., 31, 3406, 10.1093/nar/gkg595 Owczarzy, 2008, IDT SciTools: a suite for analysis and design of nucleic acid oligomers, Nucleic Acids Res., 36, W163, 10.1093/nar/gkn198 Spiridonova, 2019, DNA Aptamers to Thrombin Exosite I. Structure-Function Relationships and Antithrombotic Effects, Biochemistry (Mosc.), 84, 1521, 10.1134/S0006297919120113 Carothers, 2006, Aptamers selected for higher-affinity binding are not more specific for the target ligand, J. Am. Chem. Soc., 128, 7929, 10.1021/ja060952q Gevertz, 2005, In vitro RNA random pools are not structurally diverse: a computational analysis, RNA, 11, 853, 10.1261/rna.7271405 Chushak, 2009, In silico selection of RNA aptamers, Nucleic Acids Res., 37, e87, 10.1093/nar/gkp408 Tsai, 2017 Vorobyeva, 2016, Multivalent Aptamers: Versatile Tools for Diagnostic and Therapeutic Applications, Molecules, 21, 1613, 10.3390/molecules21121613 Tanaka, 1999, A′-form RNA double helix in the single crystal structure of r(UGAGCUUCGGCUC), Nucleic Acids Res., 27, 949, 10.1093/nar/27.4.949 Leupin, 1987, Assignment of the 13C nuclear magnetic resonance spectrum of a short DNA-duplex with 1H-detected two-dimensional heteronuclear correlation spectroscopy, Nucleic Acids Res., 15, 267, 10.1093/nar/15.1.267 Martin, 2016, Design of a molecular support for cryo-EM structure determination, Proc. Natl. Acad. Sci. USA, 113, E7456, 10.1073/pnas.1612720113 Ruigrok, 2012, Characterization of aptamer-protein complexes by X-ray crystallography and alternative approaches, Int. J. Mol. Sci., 13, 10537, 10.3390/ijms130810537 Russo Krauss, 2012, High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity, Nucleic Acids Res., 40, 8119, 10.1093/nar/gks512 Lee, 2005, A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165, Proc. Natl. Acad. Sci. USA, 102, 18902, 10.1073/pnas.0509069102 Convery, 1998, Crystal structure of an RNA aptamer-protein complex at 2.8 A resolution, Nat. Struct. Biol., 5, 133, 10.1038/nsb0298-133 Guinier, 1939, La diffraction des rayons X aux très petits angles : application à l’étude de phénomènes ultramicroscopiques, Ann. Phys., 11, 161, 10.1051/anphys/193911120161 Hammel, 2012, Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS), Eur. Biophys. J., 41, 789, 10.1007/s00249-012-0820-x Rambo, 2013, Super-resolution in solution X-ray scattering and its applications to structural systems biology, Annu. Rev. Biophys., 42, 415, 10.1146/annurev-biophys-083012-130301 Viéville, 2016, Duplex formation and secondary structure of γ-PNA observed by NMR and CD, Biophys. Chem., 210, 9, 10.1016/j.bpc.2015.09.002 Preus, 2012, Advances in quantitative FRET-based methods for studying nucleic acids, ChemBioChem, 13, 1990, 10.1002/cbic.201200400 2019, 1st International Conference “Aptamers in Russia 2019.”, Mol. Ther. Nucleic Acids, 17, 1 Da Vela, 2020, Methods, development and applications of small-angle X-ray scattering to characterize biological macromolecules in solution, Curr. Res. Struct. Biol., 2, 164, 10.1016/j.crstbi.2020.08.004 Larsen, 2020, Combining molecular dynamics simulations with small-angle X-ray and neutron scattering data to study multi-domain proteins in solution, PLoS Comput. Biol., 16, e1007870, 10.1371/journal.pcbi.1007870 Björling, 2015, Deciphering solution scattering data with experimentally guided molecular dynamics simulations, J. Chem. Theory Comput., 11, 780, 10.1021/ct5009735 Bernetti, 2021, Reweighting of molecular simulations with explicit-solvent SAXS restraints elucidates ion-dependent RNA ensembles, Nucleic Acids Res., 10.1093/nar/gkab459 Zamay, 2015, Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood, Mol. Ther., 23, 1486, 10.1038/mt.2015.108 Zamay, 2017, Current and prospective protein biomarkers of lung cancer, Cancers (Basel), 9, 155, 10.3390/cancers9110155 Zamay, 2016, Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples, Sci. Rep., 6, 34350, 10.1038/srep34350 Zuker, 1998, Using reliability information to annotate RNA secondary structures, RNA, 4, 669, 10.1017/S1355838298980116 Waugh, 2002, RNAML: a standard syntax for exchanging RNA information, RNA, 8, 707, 10.1017/S1355838202028017 Blanchet, 2015, Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY), J. Appl. Cryst., 48, 431, 10.1107/S160057671500254X Graewert, 2020, Adding size exclusion chromatography (SEC) and light scattering (LS) devices to obtain high-quality small angle X-ray scattering (SAXS) data, Crystals, 10, 1, 10.3390/cryst10110975 Panjkovich, 2018, CHROMIXS: automatic and interactive analysis of chromatography-coupled small-angle X-ray scattering data, Bioinformatics, 34, 1944, 10.1093/bioinformatics/btx846 Mertens, 2010, Structural characterization of proteins and complexes using small-angle X-ray solution scattering, J. Struct. Biol., 172, 128, 10.1016/j.jsb.2010.06.012 Gräwert, 2021, Application of small-angle X-ray scattering in studies of biological macromolecules Manalastas-Cantos, 2021, ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis, J. Appl. Cryst., 54, 343, 10.1107/S1600576720013412 Svergun, 1992, Determination of the regularization parameter in indirect-transform methods using perceptual criteria, J. Appl. Cryst., 25, 495, 10.1107/S0021889892001663 Svergun, 1999, Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing, Biophys. J., 76, 2879, 10.1016/S0006-3495(99)77443-6 Volkov, 2003, Uniqueness of ab initio shape determination in small-angle scattering, J. Appl. Cryst., 36, 860, 10.1107/S0021889803000268 Svergun, 1995, CRYSOL - A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Cryst., 28, 768, 10.1107/S0021889895007047 Knight, 2015, WAXSiS: a web server for the calculation of SAXS/WAXS curves based on explicit-solvent molecular dynamics, Nucleic Acids Res., 43, W225, 10.1093/nar/gkv309 Grudinin, 2017, Pepsi-SAXS: an adaptive method for rapid and accurate computation of small-angle X-ray scattering profiles, Acta Crystallogr. D Struct. Biol., 73, 449, 10.1107/S2059798317005745 Kikhney, 2020, SASBDB: Towards an automatically curated and validated repository for biological scattering data, Protein Sci., 29, 66, 10.1002/pro.3731 Gaus, 2014, Parameterization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications, J. Chem. Theory Comput., 10, 1518, 10.1021/ct401002w Fedorov, 2017, The fragment molecular orbital method: theoretical development, implementation in GAMESS and applications, WIREs Comput. Mol. Sci., 7, e1322, 10.1002/wcms.1322 Nishimoto, 2014, Density-functional tight-binding combined with the fragment molecular orbital method, J. Chem. Theory Comput., 10, 4801, 10.1021/ct500489d Nishimoto, 2016, The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model, Phys. Chem. Chem. Phys., 18, 22047, 10.1039/C6CP02186G Suenaga, 2005, Facio: New Computational Chemistry Environment for PC GAMESS, J. Comput. Chem., 4, 25 Hanwell, 2012, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, J. Cheminform., 4, 17, 10.1186/1758-2946-4-17 Barca, 2020, Recent developments in the general atomic and molecular electronic structure system, J. Chem. Phys., 152, 154102, 10.1063/5.0005188 Abraham, 2015, Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, Softwarex, 1–2, 19, 10.1016/j.softx.2015.06.001 Maier, 2015, ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB, J. Chem. Theory Comput., 11, 3696, 10.1021/acs.jctc.5b00255 Jorgensen, 1983, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926, 10.1063/1.445869 Bussi, 2007, Canonical sampling through velocity rescaling, J. Chem. Phys., 126, 014101, 10.1063/1.2408420 Parrinello, 1981, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Physiol., 52, 7182, 10.1063/1.328693 Hess, 1997, 3 LINCS: a linear constraint solver for molecular simulations, J. Comp. Chem., 18, 1463, 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H Essmann, 1995, A smooth particle mesh Ewald method, J. Chem. Phys., 103, 8577, 10.1063/1.470117 Ivani, 2016, Parmbsc1: a refined force field for DNA simulations, Nat. Methods, 13, 55, 10.1038/nmeth.3658 Heyer, 1999, Exploring expression data: identification and analysis of coexpressed genes, Genome Res., 9, 1106, 10.1101/gr.9.11.1106 Debye, 1915, Zerstreuung von Röntgenstrahlen, Ann. Phys., 351, 809, 10.1002/andp.19153510606 Humphrey, 1996, VMD: visual molecular dynamics, J Mol Graph., 14, 33, 10.1016/0263-7855(96)00018-5