The role of MACF1 in nervous system development and maintenance

Seminars in Cell & Developmental Biology - Tập 69 - Trang 9-17 - 2017
Jeffrey J. Moffat1, Minhan Ka1, Eui-Man Jung1, Amanda L. Smith1, Woo-Yang Kim1
1Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA

Tài liệu tham khảo

Suozzi, 2012, Spectraplakins: master orchestrators of cytoskeletal dynamics, J. Cell Biol., 197, 465, 10.1083/jcb.201112034 Byers, 1995, Novel actin crosslinker superfamily member identified by a two step degenerate PCR procedure, FEBS Lett., 368, 500, 10.1016/0014-5793(95)00722-L Gupta, 2010, Microtubule actin crosslinking factor 1 regulates the Balbiani body and animal-vegetal polarity of the zebrafish oocyte, PLoS Genet., 6, e1001073, 10.1371/journal.pgen.1001073 Leung, 1999, Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons, J. Cell Biol., 147, 1275, 10.1083/jcb.147.6.1275 Goode, 2000, Functional cooperation between the microtubule and actin cytoskeletons, Curr. Opin. Cell Biol., 12, 63, 10.1016/S0955-0674(99)00058-7 Palazzo, 2002, Microtubule-actin cross-talk at focal adhesions, Sci. STKE, 2002, pe31, 10.1126/stke.2002.139.pe31 Rodriguez, 2003, Conserved microtubule-actin interactions in cell movement and morphogenesis, Nat. Cell Biol., 5, 599, 10.1038/ncb0703-599 Yarm, 2001, The social life of actin and microtubules: interaction versus cooperation, Curr. Opin. Microbiol., 4, 696, 10.1016/S1369-5274(01)00271-5 Sun, 2001, Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): identification of a novel group of microtubule associated proteins, J. Cell Sci., 114, 161, 10.1242/jcs.114.1.161 Kodama, 2003, ACF7: an essential integrator of microtubule dynamics, Cell, 115, 343, 10.1016/S0092-8674(03)00813-4 Etienne-Manneville, 2004, Actin and microtubules in cell motility: which one is in control?, Traffic, 5, 470, 10.1111/j.1600-0854.2004.00196.x Siegrist, 2007, Microtubule-induced cortical cell polarity, Genes. Dev., 21, 483, 10.1101/gad.1511207 Chen, 2006, The role of microtubule actin cross-linking factor 1 (MACF1) in the Wnt signaling pathway, Genes. Dev., 20, 1933, 10.1101/gad.1411206 Sohda, 2015, Trans-Golgi protein p230/golgin-245 is involved in phagophore formation, Biochem. Biophys. Res. Commun., 456, 275, 10.1016/j.bbrc.2014.11.071 Goryunov, 2010, Nervous-tissue-specific elimination of microtubule-actin crosslinking factor 1a results in multiple developmental defects in the mouse brain, Mol. Cell. Neurosci., 44, 1, 10.1016/j.mcn.2010.01.010 Ka, 2016, MACF1 controls migration and positioning of cortical GABAergic interneurons in mice, Cereb. Cortex, 26 Jorgensen, 2014, Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition, Sci. Rep., 4, 5180, 10.1038/srep05180 Munemasa, 2012, The neuronal EGF-related gene Nell2 interacts with Macf1 and supports survival of retinal ganglion cells after optic nerve injury, PLoS One, 7, e34810, 10.1371/journal.pone.0034810 Bernier, 2000, (MACF) is an actin and microtubule linker protein whose expression predominates in neural, muscle, and lung development, Dev. Dyn., 219, 216, 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1041>3.0.CO;2-O Ka, 2014, MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling, Dev. Biol., 395, 4, 10.1016/j.ydbio.2014.09.009 Wang, 2017, Genetic variants of microtubule actin cross-linking factor 1 (MACF1) confer risk for parkinson’s disease, Mol. Neurobiol., 54, 2878, 10.1007/s12035-016-9861-y Levinson, 2011, Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications, Am. J. Psychiatry, 168, 302, 10.1176/appi.ajp.2010.10060876 Kenny, 2014, Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders, Mol. Psychiatry, 19, 872, 10.1038/mp.2013.127 Ka, 2016, Microtubule-actin crosslinking factor 1 is required for dendritic arborization and axon outgrowth in the developing brain, Mol. Neurobiol., 53, 6018, 10.1007/s12035-015-9508-4 Sanchez-Soriano, 2009, Mouse ACF7 and drosophila short stop modulate filopodia formation and microtubule organisation during neuronal growth, J. Cell Sci., 122, 2534, 10.1242/jcs.046268 Bernier, 1996, Cloning and characterization of mouse ACF7, a novel member of the dystonin subfamily of actin binding proteins, Genomics, 38, 19, 10.1006/geno.1996.0587 Gong, 2001, MACF1 gene structure: a hybrid of plectin and dystrophin, Mamm. Genome, 12, 852, 10.1007/s00335-001-3037-3 Karakesisoglou, 2000, An epidermal plakin that integrates actin and microtubule networks at cellular junctions, J. Cell Biol., 149, 195, 10.1083/jcb.149.1.195 Way, 1992, Evidence for functional homology in the F-actin binding domains of gelsolin and alpha-actinin: implications for the requirements of severing and capping, J. Cell Biol., 119, 835, 10.1083/jcb.119.4.835 Winder, 1995, Utrophin actin binding domain: analysis of actin binding and cellular targeting, J. Cell Sci., 108, 63, 10.1242/jcs.108.1.63 Bandi, 2015, Interdomain linker determines primarily the structural stability of dystrophin and utrophin tandem calponin-Homology domains rather than their actin-Binding affinity, Biochemistry, 54, 5480, 10.1021/acs.biochem.5b00741 Jefferson, 2007, Structural analysis of the plakin domain of bullous pemphigoid antigen1 (BPAG1) suggests that plakins are members of the spectrin superfamily, J. Mol. Biol., 366, 244, 10.1016/j.jmb.2006.11.036 Roper, 2002, The ‘spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families, J. Cell Sci., 115, 4215, 10.1242/jcs.00157 Yan, 1993, Crystal structure of the repetitive segments of spectrin, Science, 262, 2027, 10.1126/science.8266097 Pascual, 1997, Solution structure of the spectrin repeat: a left-handed antiparallel triple-helical coiled-coil, J. Mol. Biol., 273, 740, 10.1006/jmbi.1997.1344 Hu, 2016, Isoforms, structures, and functions of versatile spectraplakin MACF1, BMB Rep., 49, 37, 10.5483/BMBRep.2016.49.1.185 Lin, 2005, Microtubule actin crosslinking factor 1b: a novel plakin that localizes to the Golgi complex, J. Cell Sci., 118, 3727, 10.1242/jcs.02510 Okuda, 1999, Molecular cloning of macrophin, a human homologue of Drosophila kakapo with a close structural similarity to plectin and dystrophin, Biochem. Biophys. Res. Commun., 264, 568, 10.1006/bbrc.1999.1538 Liu, 1999, Requirement for Wnt3 in vertebrate axis formation, Nat. Genet., 22, 361, 10.1038/11932 Kelly, 2004, The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice, Development, 131, 2803, 10.1242/dev.01137 Ortega, 2016, The structure of the plakin domain of plectin reveals an extended rod-like shape, J. Biol. Chem., 291, 18643, 10.1074/jbc.M116.732909 Wu, 2011, Skin stem cells orchestrate directional migration by regulating microtubule-ACF7 connections through GSK3beta, Cell, 144, 341, 10.1016/j.cell.2010.12.033 Zaoui, 2010, ErbB2 receptor controls microtubule capture by recruiting ACF7 to the plasma membrane of migrating cells, Proc. Natl. Acad. Sci. U. S. A., 107, 18517, 10.1073/pnas.1000975107 Margaron, 2013, ELMO recruits actin cross-linking family 7 (ACF7) at the cell membrane for microtubule capture and stabilization of cellular protrusions, J. Biol. Chem., 288, 1184, 10.1074/jbc.M112.431825 Burgo, 2012, A molecular network for the transport of the TI-VAMP/VAMP7 vesicles from cell center to periphery, Dev. Cell, 23, 166, 10.1016/j.devcel.2012.04.019 Moulding, 2007, Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia, J. Exp. Med., 204, 2213, 10.1084/jem.20062324 Hossain, 2003, Developmentally regulated expression of calponin isoforms and the effect of h2-calponin on cell proliferation, Am. J. Physiol. Cell Physiol., 284, C156, 10.1152/ajpcell.00233.2002 Zhu, 2005, Centrosome impairments and consequent cytokinesis defects are possible mechanisms of taxane drugs, Anticancer Res., 25, 1919 Hu, 2015, Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells, BMB Rep., 48, 583, 10.5483/BMBRep.2015.48.10.098 D’Avino, 2015, Cytokinesis in animal cells, Cold Spring Harb. Perspect. Biol., 7, a015834, 10.1101/cshperspect.a015834 Wu, 2008, ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATPase activity, Cell, 135, 137, 10.1016/j.cell.2008.07.045 Higginbotham, 2007, The centrosome in neuronal development, Trends Neurosci., 30, 276, 10.1016/j.tins.2007.04.001 Homem, 2015, Proliferation control in neural stem and progenitor cells, Nat. Rev. Neurosci., 16, 647, 10.1038/nrn4021 Huttner, 2005, Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system, Curr. Opin. Cell Biol., 17, 648, 10.1016/j.ceb.2005.10.005 Gotz, 2005, The cell biology of neurogenesis, Nat. Rev. Mol. Cell Biol., 6, 777, 10.1038/nrm1739 Rakic, 2009, Evolution of the neocortex: a perspective from developmental biology, Nat. Rev. Neurosci., 10, 724, 10.1038/nrn2719 Greig, 2013, Molecular logic of neocortical projection neuron specification, development and diversity, Nat. Rev. Neurosci., 14, 755, 10.1038/nrn3586 Franco, 2013, Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex, Neuron, 77, 19, 10.1016/j.neuron.2012.12.022 Taverna, 2010, Neural progenitor nuclei IN motion, Neuron, 67, 906, 10.1016/j.neuron.2010.08.027 Miyata, 2014, Interkinetic nuclear migration generates and opposes ventricular-zone crowding: insight into tissue mechanics, Front. Cell. Neurosci., 8, 473 Mora-Bermudez, 2015, Novel insights into mammalian embryonic neural stem cell division: focus on microtubules, Mol. Biol. Cell, 26, 4302, 10.1091/mbc.E15-03-0152 Taverna, 2014, The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex, Annu. Rev. Cell Dev. Biol., 30, 465, 10.1146/annurev-cellbio-101011-155801 Konno, 2008, Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis, Nat. Cell Biol., 10, 93, 10.1038/ncb1673 Mora-Bermudez, 2014, Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division, Elife, 3, 10.7554/eLife.02875 Zigman, 2014, Hoxb1b controls oriented cell division, cell shape and microtubule dynamics in neural tube morphogenesis, Development, 141, 639, 10.1242/dev.098731 Ferreira, 2014, Microtubule plus-end tracking proteins and their roles in cell division, Int. Rev. Cell Mol. Biol., 309, 59, 10.1016/B978-0-12-800255-1.00002-8 Howard, 2007, Microtubule polymerases and depolymerases, Curr. Opin. Cell Biol., 19, 31, 10.1016/j.ceb.2006.12.009 Mayr, 2007, The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression, Curr. Biol., 17, 488, 10.1016/j.cub.2007.02.036 Tanenbaum, 2006, CLIP-170 facilitates the formation of kinetochore-microtubule attachments, EMBO J., 25, 45, 10.1038/sj.emboj.7600916 Wade, 2009, On and around microtubules: an overview, Mol. Biotechnol., 43, 177, 10.1007/s12033-009-9193-5 Wood, 2001, Past and future of the mitotic spindle as an oncology target, Curr. Opin. Pharmacol., 1, 370, 10.1016/S1471-4892(01)00064-9 Scheffler, 2012, Motor proteins: kinesin can replace Myosin, Curr. Biol., 22, R52, 10.1016/j.cub.2011.12.007 Watanabe, 2005, Regulation of microtubules in cell migration, Trends Cell. Biol., 15, 76, 10.1016/j.tcb.2004.12.006 Horwitz, 2003, Cell migration, Curr. Biol., 13, R756, 10.1016/j.cub.2003.09.014 Lauffenburger, 1996, Cell migration: a physically integrated molecular process, Cell, 84, 359, 10.1016/S0092-8674(00)81280-5 Slep, 2005, Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end, J. Cell Biol., 168, 587, 10.1083/jcb.200410114 Drabek, 2006, Role of CLASP2 in microtubule stabilization and the regulation of persistent motility, Curr. Biol., 16, 2259, 10.1016/j.cub.2006.09.065 Yue, 2016, In vivo epidermal migration requires focal adhesion targeting of ACF7, Nat. Commun., 7, 11692, 10.1038/ncomms11692 Cheng, 2010, The impact of miR-34a on protein output in hepatocellular carcinoma HepG2 cells, Proteomics, 10, 1557, 10.1002/pmic.200900646 Rakic, 1972, Mode of cell migration to the superficial layers of fetal monkey neocortex, J. Comp. Neurol., 145, 61, 10.1002/cne.901450105 Moffat, 2015, Genes and brain malformations associated with abnormal neuron positioning, Molecular Brain, 8, 72, 10.1186/s13041-015-0164-4 Tan, 1998, Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex, Neuron, 21, 295, 10.1016/S0896-6273(00)80539-5 Evsyukova, 2013, Integrative mechanisms of oriented neuronal migration in the developing brain, Annu. Rev. Cell Dev. Biol., 29, 299, 10.1146/annurev-cellbio-101512-122400 Sultan, 2013, Production and organization of neocortical interneurons, Front. Cell. Neurosci., 7, 221, 10.3389/fncel.2013.00221 Anderson, 2001, Distinct cortical migrations from the medial and lateral ganglionic eminences, Development, 128, 353, 10.1242/dev.128.3.353 Molyneaux, 2007, Neuronal subtype specification in the cerebral cortex, Nat. Rev. Neurosci., 8, 427, 10.1038/nrn2151 Gleeson, 2000, Neuronal migration disorders: from genetic diseases to developmental mechanisms, Trends Neurosci., 23, 352, 10.1016/S0166-2236(00)01607-6 Jan, 2010, Branching out: mechanisms of dendritic arborization, Nat. Rev. Neurosci., 11, 316, 10.1038/nrn2836 Kaufmann, 2000, Dendritic anomalies in disorders associated with mental retardation, Cereb. Cortex, 10, 981, 10.1093/cercor/10.10.981 Wegiel, 2010, The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes, Acta Neuropathol., 119, 755, 10.1007/s00401-010-0655-4 Feng, 2001, Protein-protein interactions, cytoskeletal regulation and neuronal migration, Nat. Rev. Neurosci., 2, 408, 10.1038/35077559 Bielas, 2004, Cytoskeletal-associated proteins in the migration of cortical neurons, J. Neurobiol., 58, 149, 10.1002/neu.10280 Xie, 2006, Cyclin-dependent kinase 5 permits efficient cytoskeletal remodeling–a hypothesis on neuronal migration, Cereb. Cortex, 16, i64, 10.1093/cercor/bhj170 da Silva, 2002, Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis, Nat. Rev. Neurosci., 3, 694, 10.1038/nrn918 Tsaneva-Atanasova, 2009, Quantifying neurite growth mediated by interactions among secretory vesicles, microtubules, and actin networks, Biophys. J., 96, 840, 10.1016/j.bpj.2008.10.036 Tian, 2015, Anillin regulates neuronal migration and neurite growth by linking RhoG to the actin cytoskeleton, Curr. Biol., 25, 1135, 10.1016/j.cub.2015.02.072 Belliveau, 2006, Enhanced neurite outgrowth in PC12 cells mediated by connexin hemichannels and ATP, J. Biol. Chem., 281, 20920, 10.1074/jbc.M600026200 Korobova, 2010, Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis, Mol. Biol. Cell, 21, 165, 10.1091/mbc.E09-07-0596 Penzes, 2012, Regulation of the actin cytoskeleton in dendritic spines, Adv. Exp. Med. Biol., 970, 81, 10.1007/978-3-7091-0932-8_4 Shirao, 2013, Actin filaments and microtubules in dendritic spines, J. Neurochem., 126, 155, 10.1111/jnc.12313 Okamoto, 2004, Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity, Nat. Neurosci., 7, 1104, 10.1038/nn1311 Koleske, 2013, Molecular mechanisms of dendrite stability, Nat. Rev. Neurosci., 14, 536, 10.1038/nrn3486 Kim, 2011, Functions of GSK-3 signaling in development of the nervous system, Front. Mol. Neurosci., 4, 44, 10.3389/fnmol.2011.00044 Kim, 2009, GSK-3 is a master regulator of neural progenitor homeostasis, Nat. Neurosci., 12, 1390, 10.1038/nn.2408 Zhou, 2004, NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC, Neuron, 42, 897, 10.1016/j.neuron.2004.05.011 Kim, 2006, Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth, Neuron, 52, 981, 10.1016/j.neuron.2006.10.031 Tamminga, 2005, Phenotype of schizophrenia: a review and formulation, Mol. Psychiatry, 10, 27, 10.1038/sj.mp.4001563 Steinecke, 2012, Disrupted-in-schizophrenia 1 (DISC1) is necessary for the correct migration of cortical interneurons, J. Neurosc., 32, 738, 10.1523/JNEUROSCI.5036-11.2012 Kamiya, 2005, A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development, Nat. Cell Biol., 7, 1167, 10.1038/ncb1328 Ishizuka, 2011, DISC1-dependent switch from progenitor proliferation to migration in the developing cortex, Nature, 473, 92, 10.1038/nature09859 Duan, 2007, Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain, Cell, 130, 1146, 10.1016/j.cell.2007.07.010 Hayashi-Takagi, 2010, Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1, Nat. Neurosci., 13, 327, 10.1038/nn.2487 Harrison, 2005, Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence, Mol. Psychiatry, 10, 40, 10.1038/sj.mp.4001558 Camargo, 2007, Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia, Mol. Psychiatry, 12, 74, 10.1038/sj.mp.4001880 Feng, 2006, Microtubule: a common target for parkin and Parkinson's disease toxins, Neuroscientist, 12, 469, 10.1177/1073858406293853 Simunovic, 2009, Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson's disease pathology, Brain, 132, 1795, 10.1093/brain/awn323