The role of K63-linked polyubiquitin in several types of autophagy

Anna Dósa1, Tamás Csizmadia1
1Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary

Tóm tắt

AbstractLysosomal-dependent self-degradative (autophagic) mechanisms are essential for the maintenance of normal homeostasis in all eukaryotic cells. Several types of such self-degradative and recycling pathways have been identified, based on how the cellular self material can incorporate into the lysosomal lumen. Ubiquitination, a well-known and frequently occurred posttranslational modification has essential role in all cell biological processes, thus in autophagy too. The second most common type of polyubiquitin chain is the K63-linked polyubiquitin, which strongly connects to some self-degradative mechanisms in the cells. In this review, we discuss the role of this type of polyubiquitin pattern in numerous autophagic processes.

Từ khóa


Tài liệu tham khảo

Ahlberg J, Beije B, Berkenstam A, Henell F, Glaumann H (1987) Effects on in vivo and in vitro administration of vinblastine on the perfused rat liver–identification of crinosomes. Exp Mol Pathol 47:309–326

Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2015). Protein Function. In: Molecular Biology of the Cell. B Alberts (Eds). Garland Science. 157–161

Badarudeen B, Anand U, Mukhopadhyay S, Manna TK (2021) Ubiquitin signaling in the control of centriole duplication. FEBS J. https://doi.org/10.1111/febs.16069

Bhattacharjee A, Szabó Á, Csizmadia T, Laczkó-Dobos H, Juhász G (2019) Understanding the importance of autophagy in human diseases using Drosophila. J Genet Genomics 46:157–169

Bhattacharyya S, Yu H, Mim C, Matouschek A (2014) Regulated protein turnover: snapshots of the proteasome in action. Nat Rev Mol Cell Biol 15:122–133

Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286

Clague MJ, Urbé S (2017) Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitinases. FEBS J 284:1753–1766

Clague M, Barsukov I, Coulson J, Liu H, Rigden D, Urbé S (2013) Deubiquitylases from genes to organism. Physiol Rev 93(3):1289–1315. https://doi.org/10.1152/physrev.00002.2013

Clague M, Heride C, Urbé S (2015) The demographics of the ubiquitin system. Trends Cell Biol 25(7):417–426. https://doi.org/10.1016/j.tcb.2015.03.002

Clough B, Wright J, Pereira P, Hirst E, Johnston A, Henriques R, Frickel E (2016) K63-linked ubiquitination targets toxoplasma gondii for endo-lysosomal destruction in IFNγ-stimulated human cells. PLOS Pathog 12(11):e1006027. https://doi.org/10.1371/journal.ppat.1006027

Coux O, Zieba BA, Meiners S (2020) The proteasome system in health and disease. Adv Exp Med Biol 1233:55–100

Csizmadia T, Juhász G (2020) Crinophagy mechanisms and its potential role in human health and disease. Prog Mol Biol Transl Sci 172:239–255

Csizmadia T, Lőw P (2020) The role of deubiquitinating enzymes in the various forms of autophagy. Int J Mol Sci 21(12):4196. https://doi.org/10.3390/ijms21124196

Csizmadia T, Lőrincz P, Hegedűs K, Széplaki S, Lőw P, Juhász G (2018) Molecular mechanisms of developmentally programmed crinophagy in Drosophila. J Cell Biol 217(1):361–374. https://doi.org/10.1083/jcb.201702145

Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24:92–104

Datta A, Hura G, Wolberger C (2009) The structure and conformation of Lys63 linked tetraubiquitin. J Mol Biol 392. PMID: 19664638

Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351–361

Denton D, Kumar S (2019) Autophagy-dependent cell death. Cell Death Differ 26(4):605–615

Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J, Ash P, Shoraka S, Zlatkovic J, Eckman CB, Patterson C, Dickson DW, Nahman NS, Hutton M, Burrows F, Petrucelli L (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658

Dikic I (2017) Proteasomal and autophagic degradation systems. Annu Rev Biochem 86:193–224

Eddins M, Varadan R, Fushman D, Pickart C, Wolberger C (2007) Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. J Mol Biol 367. PMID: 17240395

Emmerich C, Ordureau A, Strickson S, Arthur J, Pedrioli P, Komander D, Cohen P (2013) Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci 110(38):15247–15252. https://doi.org/10.1073/pnas.1314715110

Erpapazoglou Z, Walker O, Haguenauer-Tsapis R (2014) Versatile roles of k63-linked ubiquitin chains in trafficking. Cells 3:1027–1088

Ferreira J, Soares A, Ramalho J, Pereira P, Girao H (2015) K63 linked ubiquitin chain formation is a signal for HIF1A degradation by chaperone-mediated autophagy. Sci Rep. https://doi.org/10.1038/srep10210

Fiil BK, Damgaard RB, Wagner SA, Keusekotten K, Fritsch M, Bekker-Jensen S, Mailand N, Choudhary C, Komander D, Gyrd-Hansen M (2013) OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. Mol Cell 50:818–830

Fujita N, Morita E, Itoh T, Tanaka A, Nakaoka M, Osada Y, Umemoto T, Saitoh T, Nakatogawa H, Kobayashi S, Haraguchi T, Guan J, Iwai K, Tokunaga F, Saito K, Ishibashi K, Akira S, Fukuda M, Noda T, Yoshimori T (2013) Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J C Biol 203(1):115–128

Fusco C, Mandriani B, Di Rienzo M, Micale L, Malerba N, Cocciadiferro D, Sjøttem E, Augello B, Squeo G, Pellico M, Jain A, Johansen T, Fimia G, Merla G (2018) TRIM50 regulates Beclin 1 proautophagic activity. Biochim Biophys Acta Mol Cell Res 1865(6):908–919

Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, Cuervo AM, Debnath J, Deretic V, Dikic I, Eskelinen EL, Fimia GM, Fulda S, Gewirtz DA, Green DR, Hansen M, Harper JW, Jäättelä M, Johansen T, Juhasz G, Kimmelman AC, Kraft C, Ktistakis NT, Kumar S, Levine B, Lopez-Otin C, Madeo F, Martens S, Martinez J, Melendez A, Mizushima N, Münz C, Murphy LO, Penninger JM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Santambrogio L, Scorrano L, Simon AK, Simon HU, Simonsen A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Kroemer G (2017) Molecular definitions of autophagy and related processes. EMBO J 36:1811–1836

Gao B, Yu W, Lv P,Liang X, Sun S, Zhang Y(2021) Parkin overexpression alleviates cardiac aging through facilitating K63-polyubiquitination of TBK1 to facilitate mitophagy. Biochimica et biophysica acta. Mol Basis Dis. 1867

Gatti M, Pinato S, Maiolica A, Rocchio F, Prato MG, Aebersold R, Penengo L (2015) RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep 10:226–238

Goldstein G, Scheid M, Hammerling U, Schlesinger DH, Niall HD, Boyse EA (1975) Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acade Sci 72(1):11–15

Henn IH, Bouman L, Schlehe JS, Schlierf A, Schramm JE, Wegener E, Nakaso K, Culmsee C, Berninger B, Krappmann D, Tatzelt J, Winklhofer KF (2007) Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J Neurosci 27:1868–1878

Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67(1):425–479. https://doi.org/10.1146/annurev.biochem.67.1.425

Hodge CD, Leo Spyracopoulos JN, Glover M (2016) Ubc13: the Lys63 ubiquitin chain building machine. Oncotarget 7(39):64471–64504. https://doi.org/10.18632/oncotarget.10948

Hoppe T (2005) Multiubiquitylation by E4 enzymes: “one size” doesn’t fit all. Trends Biochem Sci 30:183–187

Jin J, Xie X, Xiao Y, Hu H, Zou Q, Cheng X, Sun SC (2016) Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nat Immunol 17:259–268

Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635–644

Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81(1):203–229. https://doi.org/10.1146/annurev-biochem-060310-170328

Komander D, Clague M, Urbé S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563

Komander D, Reyes‐Turcu F, Licchesi J, Odenwaelder P, Wilkinson K, Barford D (2009) Molecular discrimination of structurally equivalent Lys 63‐linked and linear polyubiquitin chains. EMBO Rep 10(6):662–662. https://doi.org/10.1038/embor.2009.106

Kong JH, Young CB, Pusapati GV, Patel CB, Ho S, Krishnan A, Lin JI, Devine W, Moreau de Bellaing A, Athni TS, Aravind L, Gunn TM, Lo CW, Rohatgi R (2020) A membrane-tethered ubiquitination pathway regulates hedgehog signaling and heart development. Dev Cell 55:432-449.e412

Kudriaeva AA, Belogurov AA (2019) Proteasome: a nanomachinery of creative destruction. Biochemistry 84:S159–S192

Kulathu Y, Komander D (2012) Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 13(8):508–523

Kwon YT, Ciechanover A (2017) The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci 42:873–886

Lamark T, Svenning S, Johansen T (2017) Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays Biochem 61(6):609–624. https://doi.org/10.1042/EBC20170035

Lazarou M, Sliter D, Kane L, Sarraf S, Wang C, Burman J, Sideris D, Fogel A, Youle R (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314. https://doi.org/10.1038/nature14893

Lenoir JJ, Parisien JP, Horvath CM (2021) Immune regulator LGP2 targets Ubc13/UBE2N to mediate widespread interference with K63 polyubiquitination and NF-κB activation. Cell Rep 37:110175

Li M, Rong Y, Chuang YS, Peng D, Emr SD (2015) Ubiquitin-dependent lysosomal membrane protein sorting and degradation. Mol Cell 57:467–478

Lim K, Lim G (2011) K63-linked ubiquitination and neurodegeneration. Neurobiol Dis 43(1):9–16. https://doi.org/10.1016/j.nbd.2010.08.001

Lim G, Chew K, Ng X, Henry-Basil A, Sim R, Tan J, Chai C, Lim K (2013) Proteasome inhibition promotes Parkin-Ubc13 interaction and lysine 63-linked ubiquitination. PLoS ONE 8(9):e73235. https://doi.org/10.1371/journal.pone.0073235

Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111:209–218

Liu P, Gan W, Siyuan S, Hauenstein AV, Tian-min F, Brasher B, Schwerdtfeger C, Liang AC, Ming X, Wei W (2018) K63-linked polyubiquitin chains bind to DNA to facilitate DNA damage repair. Sci Signal. https://doi.org/10.1126/scisignal.aar8133

Lőw P, Varga Á, Pircs K, Nagy P, Szatmári Z, Sass M, Juhász G (2013) Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila. BMC Cell Biol 14:29

Marzella L, Ahlberg J, Glaumann H (1981) Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Arch B Cell Pathol Incl Mol Pathol 36:219–234

Meyer H, Rape M (2014) Enhanced protein degradation by branched ubiquitin chains. Cell 157(4):910–921. https://doi.org/10.1016/j.cell.2014.03.037

Mijaljica D, Prescott M, Devenish R (2011) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7(7):673–682. https://doi.org/10.4161/auto.7.7.14733

Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, Myung K (2008) Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A 105:12411–12416

Murata H, Sakaguchi M, Kataoka K, Huh NH (2013) SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria. Mol Biol Cell 24:2772–2784

Nakasone MA, Livnat-Levanon N, Glickman MH, Cohen RE, Fushman D (2013) Mixed-linkage ubiquitin chains send mixed messages. Structure 21:727–740

Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Gretzmeier C, Dengjel J, Piacentini M, Fimia G, Cecconi F (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nature Cell Biol 15(4):406–416

Nelson DL, Cox MM (2017) Peptides and Proteins. In Lehninger Principles of Biochemistry, W.H Freeman, New York

Nelson DL, Cox MM (2017b) Phosphoryl Group Transfers and ATP. Lehninger Principles of Biochemistry. W.H. Freeman, New York, pp 496–500

Nelson DL, Cox MM (2017c) Protein Metabolism. Lehninger Principles of Biochemistry. W.H. Freeman, New York, pp 1075–1077

Ordureau A, Sarraf SA, Duda DM, Heo JM, Jedrychowski MP, Sviderskiy VO, Olszewski JL, Koerber JT, Xie T, Beausoleil SA, Wells JA, Gygi SP, Schulman BA, Harper JW (2014) Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 56:360–375

Parzych K, Klionsky D (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3):460–473

Peng D, Zeng M, Muromoto R, Matsuda T, Shimoda K, Subramaniam M, Spelsberg T, Wei W, Venuprasad K (2011) Noncanonical K27-linked polyubiquitination of TIEG1 regulates Foxp3 expression and tumor growth. J Immunol 186(10):5638–5647

Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70(1):503–533. https://doi.org/10.1146/annurev.biochem.70.1.503

Radley EH, Long J, Gough KC, Layfield R (2019) The ‘dark matter’ of ubiquitin-mediated processes: opportunities and challenges in the identification of ubiquitin-binding domains. Biochem Soc Trans 47(6):1949–1962. https://doi.org/10.1042/BST20190869

Raimondi M, Cesselli D, Di Loreto C, La Marra F, Schneider C, Demarchi F (2019) USP1 (ubiquitin specific peptidase 1) targets ULK1 and regulates its cellular compartmentalization and autophagy. Autophagy 15(4):613–630. https://doi.org/10.1080/15548627.2018.1535291

Richard T, Herzog L, Vornberger J, Rahmanto A, Sangfelt O, Salomons F, Dantuma N (2020) K63-linked ubiquitylation induces global sequestration of mitochondria. Sci Rep. https://doi.org/10.1038/s41598-020-78845-7

Rieser E, Cordier S, Walczak H (2013) Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem Sci 38(2):94–102. https://doi.org/10.1016/j.tibs.2012.11.007

Ruocco N, Costantini S, Costantini M (2016) Blue-print autophagy: potential for cancer treatment. Mar Drugs 14(7):138. https://doi.org/10.3390/md14070138

Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M, Ookata K, Nureki O, Iwai K, Komada M, Fukai S (2008) Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455:358–362

Schulman BA, Harper JW (2009) Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 10:319–331

Shi C, Kehrl J (2010) TRAF6 and A20 Regulate lysine 63–linked ubiquitination of beclin-1 to control TLR4-induced autophagy. Sci Signal. https://doi.org/10.1126/scisignal.2000751

Sjoerd JL, Wijk HT, Timmers M (2010) The family of ubiquitin‐conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J 24(4):981–993. https://doi.org/10.1096/fj.09-136259

Skaug B, Jiang X, Chen Z (2009) The role of ubiquitin in NF-κB regulatory pathways. Annu Rev Biochem 78(1):769–796. https://doi.org/10.1146/annurev.biochem.78.070907.102750

Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26:399–422

Tan J., Wong E, Kirkpatrick D, Pletnikova O, Ko H, Tay S, Ho M, Troncoso J, Gygi S, Lee M, Dawson V, Dawson T, Lim K (2008) Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Human Mol Genetics 17(3):431–439. https://doi.org/10.1093/hmg/ddm320

Tao M, Scacheri PC, Marinis JM, Harhaj EW, Matesic LE, Abbott DW (2009) ITCH K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways. Curr Biol 19:1255–1263

Thapa N, Choi S, Tan X, Wise T, Anderson RA (2015) Phosphatidylinositol phosphate 5-Kinase Iγ and phosphoinositide 3-kinase/Akt signaling couple to promote oncogenic growth. J Biol Chem 290:18843–18854

Todi SV, Winborn BJ, Scaglione KM, Blount JR, Travis SM, Paulson HL (2009) Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J 28:372–382

Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424:793–796

Vina-Vilaseca A, Sorkin A (2010) Lysine 63-linked polyubiquitination of the dopamine transporter requires WW3 and WW4 domains of Nedd4-2 and UBE2D ubiquitin-conjugating enzymes. J Biol Chem 285:7645–7656

Vong QP, Cao K, Li HY, Iglesias PA, Zheng Y (2005) Chromosome alignment and segregation regulated by ubiquitination of survivin. Science 310:1499–1504

Wang X, Feng S, Wang Z, Yuan Y, Chen N, Zhang Y (2020) Parkin, an E3 ubiquitin ligase, plays an essential role in mitochondrial quality control in parkinson’s disease. Cell Mol Neurobiol 41(7):1395–1411

Weckman A, Di Ieva A, Rotondo F, Syro LV, Ortiz LD, Kovacs K, Cusimano MD (2014) Autophagy in the endocrine glands. J Mol Endocrinol 52:R151-163

Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430:694–699

Wickliffe KE, Williamson A, Meyer HJ, Kelly A, Rape M (2011) K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 21:656–663

Xin W, Lei C, Xia T, Zhong X, Yang Q, Shu H (2019) Regulation of TRIF-mediated innate immune response by K27-linked polyubiquitination and deubiquitination. Nat Commun. https://doi.org/10.1038/s41467-019-12145-1

Xu D, Shan B, Sun H, Xiao J, Zhu K, Xie X, Li X, Liang W, Lu X, Qian L, Yuan J (2016) USP14 regulates autophagy by suppressing K63 ubiquitination of Beclin 1. Genes Dev 30(15):1718–1730

Xue B, Li H, Guo M, Wang J, Yan X, Zou X, Deng R, Li G, Zhu H (2018) TRIM21 promotes innate immune response to RNA viral infection through Lys27-linked polyubiquitination of MAVS. J Virol. https://doi.org/10.1128/JVI.00321-18

Yan K, Ponnusamy M, Xin Y, Wang Q, Li P, Wang K (2018) The role of K63-linked polyubiquitination in cardiac hypertrophy. J Cell Mol Med 22:4558–4567

Yin Q, Han T, Fang B, Zhang G, Zhang C, Roberts E, Izumi V, Zheng M, Jiang S, Yin X, Kim M, Cai J, Haura E, Koomen J, Smalley K, Wan L (2019) K27-linked ubiquitination of BRAF by ITCH engages cytokine response to maintain MEK-ERK signaling. Nat Commun. https://doi.org/10.1038/s41467-019-09844-0

Yuan WC, Lee YR, Lin SY, Chang LY, Tan YP, Hung CC, Kuo JC, Liu CH, Lin MY, Xu M, Chen ZJ, Chen RH (2014) K33-linked polyubiquitination of coronin 7 by Cul3-KLHL20 ubiquitin E3 ligase regulates protein trafficking. Mol Cell 54:586–600

Yutao W, Wen H, Jiajun F, Cai L, Li P, Zhao C, Dong Z et al (2020) Hepatocyte TNF receptor-associated factor 6 aggravates hepatic inflammation and fibrosis by promoting lysine 6–linked polyubiquitination of apoptosis signal-regulating kinase 1. Hepatology 71(1):93–11

Zaffagnini G, Savova A, Danieli A, Romanov J, Tremel S, Ebner M, Peterbauer T, Sztacho M, Trapannone R, Tarafder A, Sachse C, Martens S (2018) p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J. https://doi.org/10.15252/embj.201798308

Zhang Q, Lenardo M, Baltimore D (2017) 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168(1–2):37–57. https://doi.org/10.1016/j.cell.2016.12.012

Zheng N, Shabek N (2017) Ubiquitin Ligases: structure, function, and regulation. Ann Rev Biochem 86:129–157