The role of Cerium, Europium and Erbium doped TiO2 photocatalysts in water treatment: A mini-review
Tài liệu tham khảo
Golovko, 2021, Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems, Sci. Total Environ., 754, 10.1016/j.scitotenv.2020.142122
Baken, 2018, Toxicological risk assessment and prioritization of drinking water relevant contaminants of emerging concern, Environ. Int., 118, 293, 10.1016/j.envint.2018.05.006
Kasonga, 2021, Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: a review, J. Environ. Manage., 277, 10.1016/j.jenvman.2020.111485
Matafonova, 2018, Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: a review, Water Res., 132, 177, 10.1016/j.watres.2017.12.079
Li, 2019, The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: a mini-review, Chin. Chem. Lett., 30, 2139, 10.1016/j.cclet.2019.04.057
Machulek Jr, 2013, Application of different advanced oxidation processes for the degradation of organic pollutants, Organic pollutants-Monitoring, risk and treatment, InTech., 141
López-Muñoz, 2011, Mercury removal from aqueous solutions of HgCl2 by heterogeneous photocatalysis with TiO2, Appl. Catal. B, 104, 220, 10.1016/j.apcatb.2011.03.029
Belver, 2019, Chapter 22 - Semiconductor Photocatalysis for Water Purification, 581
Cassaignon, 2013, Titanium Dioxide in Photocatalysis, Nanomaterials: A Danger or a Promise?, 153
Saqib, 2016, A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater, Environ. Sci. Pollut. Res. Int., 23, 15941, 10.1007/s11356-016-6984-7
Barakat, 2016, Photocatalytic activity enhancement of Titanium Dioxide Nanoparticles, Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles, 1
Qin, 2011, Dye-sensitized TiO2 film with bifunctionalized zones for photocatalytic degradation of 4-cholophenol, J. Hazard. Mater., 192, 599, 10.1016/j.jhazmat.2011.05.059
Chowdhury, 2012, Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: parametric and Kinetic study, Ind. Eng. Chem. Res., 51, 4523, 10.1021/ie2025213
Subramanian, 2001, Semiconductor−metal composite nanostructures. to what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?, J. Phys. Chem. B, 105, 11439, 10.1021/jp011118k
Sakthivel, 2004, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res., 38, 3001, 10.1016/j.watres.2004.04.046
Bhatia, 2016, Transition metal doped TiO2 mediated photocatalytic degradation of anti-inflammatory drug under solar irradiations, J. Environ. Chem. Eng., 4, 1267, 10.1016/j.jece.2016.01.032
Karuppasamy, 2021, An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation, J. Environ. Chem. Eng., 9, 10.1016/j.jece.2021.105254
Paola, 2001, Transition metal doped TiO2: physical properties and photocatalytic behaviour, Int. J. Photoenergy, 3, 10.1155/S1110662X01000216
Tang, 2021, Novel p-n heterojunction Bi2O3/Ti3+-TiO2 photocatalyst enables the complete removal of tetracyclines under visible light, Chem. Eng. J., 417, 10.1016/j.cej.2020.128058
Xue, 2019, Constructing a Z-scheme Heterojunction of Egg-Like Core@shell CdS@TiO2 Photocatalyst via a Facile Reflux Method for Enhanced Photocatalytic Performance, Nanomaterials, 9, 10.3390/nano9020222
Liu, 2017, Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core–shell structure for visible-light photocatalytic degradation, Chin. J. Catal., 38, 1052, 10.1016/S1872-2067(17)62845-6
Wu, 2010, Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible-light activity, J. Alloys Compd., 502, 289, 10.1016/j.jallcom.2010.04.189
Li, 2015, A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol–gel method, Appl. Surf. Sci., 344, 112, 10.1016/j.apsusc.2015.03.071
Umebayashi, 2002, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett., 81, 454, 10.1063/1.1493647
Vieira, 2021, Tuning the Photoactivity of TiO2 Nanoarchitectures doped with Cerium or Neodymium and application to color removal from wastewaters, Environ. Technol., 42, 1038, 10.1080/09593330.2019.1651402
Makdee, 2018, Effects of Ce Addition on the Properties and Photocatalytic Activity of TiO2, Investigated by X-ray Absorption Spectroscopy, Mater. Chem. Phys., 213, 431, 10.1016/j.matchemphys.2018.04.016
Gong, 2013, Preparation and characterization of cerium-doped titanium dioxide/ultrahigh-molecular-weight polyethylene porous composites with excellent photocatalytic activity, J. Appl. Polym. Sci., 129, 1212, 10.1002/app.38728
Tong, 2007, Preparation of Ce–TiO2 Catalysts by Controlled Hydrolysis of Titanium Alkoxide based on Esterification reaction and study on its photocatalytic activity, J. Colloid Interface Sci., 315, 382, 10.1016/j.jcis.2007.06.051
Sun, 2014, Synthesis, Characterization of Ce-doped TiO2 Nanotubes with high visible light photocatalytic activity, Catal. Lett., 144, 2107, 10.1007/s10562-014-1377-3
Wang, 2016, Enhanced photocatalytic properties of reusable TiO2-loaded natural porous minerals in dye wastewater purification, Powder Technol., 302, 426, 10.1016/j.powtec.2016.09.003
Kasinathan, 2016, Photodegradation of Organic Pollutants RhB Dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications, Sci. Rep., 6, 1, 10.1038/srep38064
Choudhury, 2012, Extending photocatalytic activity of TiO2 nanomaterials: a danger or a promise? abbreviation, Photochem. Photobiol., 88, 257, 10.1111/j.1751-1097.2011.01064.x
Ma, 2009, Hierarchically structured squama-like Cerium-Doped Titania: synthesis, Photoactivity, and Catalytic CO Oxidation, J. Phys. Chem. C, 113, 16658, 10.1021/jp906187g
Duan, 2012, Photocatalytic degradation of methyl orange on Ce-TiO2 under visible light irradiation, Adv. Mater. Res., 529, 528, 10.4028/www.scientific.net/AMR.529.528
Liu, 2014, The preparation, characterization and photocatalytic activity of radical-shaped CeO2/ZnO microstructures, Ceram. Int., 40, 4019, 10.1016/j.ceramint.2013.08.053
Yao, 2014, Preparation, characterization and photocatalytic activity of cerium-doped titanium dioxide supported on activated carbon fiber composite, Indian J. Chem., 53A, 665
Xu, 2009, Study on photocatalytic performance and degradation kinetics of x-3b with lanthanide-modified titanium dioxide under solar and UV illumination, J. Hazard. Mater., 164, 762, 10.1016/j.jhazmat.2008.08.108
Santiago-Morales, 2013, Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluen, Water Res., 47, 5546, 10.1016/j.watres.2013.06.030
Li, 2005, Enhanced photocatalytic activity of Ce3+–TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control, Appl. Catal., A, 285, 181, 10.1016/j.apcata.2005.02.025
Shaari, 2012, Synthesis and characterization of CNT/Ce-TiO2 nanocomposite for Phenol degradation, J. Rare Earths, 30, 651, 10.1016/S1002-0721(12)60107-0
He, 2021, Photocatalytic degradation of deoxynivalenol using cerium doped titanium dioxide under ultraviolet light irradiation, Toxins (Basel), 13, 481, 10.3390/toxins13070481
Xue, 2011, Preparation of Titania nanotubes doped with cerium and their photocatalytic activity for glyphosate, Chem. Eng. J., 167, 397, 10.1016/j.cej.2011.01.007
Behera, 2021, Improved Photodegradation and antimicrobial activity of hydrothermally synthesized 0.2Ce-TiO2/RGO under visible light, Colloids Surf., A, 620, 1265531, 10.1016/j.colsurfa.2021.126553
Galindo, 2008, Photodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid on Nanocrystalline TiO2–CeO2 Sol–Gel Catalysts, J. Mol. Catal. A: Chem., 281, 119, 10.1016/j.molcata.2007.10.008
López, 2004, Porosity, structural and fractal study of Sol–Gel TiO2–CeO2 mixed oxides, J. Solid State Chem., 177, 1873, 10.1016/j.jssc.2004.01.013
Fang, 2007, Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides, Appl. Surf. Sci., 253, 8952, 10.1016/j.apsusc.2007.05.013
Liu, 2005, Preparation and Characterization of Cerium Oxide doped TiO2 Nanoparticles, J. Phys. Chem. Solids, 66, 161, 10.1016/j.jpcs.2004.09.002
Liu, 2014, Preparation of cerium modified titanium dioxide nanoparticles and investigation of their visible light photocatalytic performance, Int. J. Photoenergy, 1
Vieira, 2021, Tuning the photoactivity of TiO2 nanoarchitectures doped with cerium or neodymium and application to colour removal from wastewaters, Environ. Technol., 42, 1038, 10.1080/09593330.2019.1651402
Gionco, 2013, Structural and spectroscopic characterization of CeO2-TiO2 mixed oxides, J. Mater. Chem. A, 10918, 10.1039/c3ta12018j
Martos, 2008, Sol–Gel synthesis of tunable cerium Titanate materials, Eur. J. Inorg. Chem., 2008, 3163, 10.1002/ejic.200800303
Michal, 2014, Photocatalytic and photodisinfectant activity of sulfated and Eu doped anatase against clinically important microorganisms, Ceram. Int., 40, 5745, 10.1016/j.ceramint.2013.11.013
Leostean, 2013, Properties of Eu doped TiO2 nanoparticles prepared by using organic additives, J. Alloys Compd., 575, 29, 10.1016/j.jallcom.2013.04.067
Gohr, 2020, Facile hydrothermal synthesis of Sm and Eu doped TiO2/graphene oxide nanocomposites for photocatalytic applications, Egypt. J. Chem., 63, 1359
Caschera, 2018, Fabrication of Eu-TiO2 NCs functionalized cotton textile as a multifunctional photocatalyst for dye pollutants degradation, Appl. Surf. Sci., 427, 81, 10.1016/j.apsusc.2017.08.015
Khade, 2017, Enhanced photocatalytic activity of europium doped TiO2 under sunlight for the degradation of methyl orange, J. Mater. Sci. Mater. Electron., 28, 11002, 10.1007/s10854-017-6883-9
Khalid, 2018, The role of graphene and europium on TiO2 performance for photocatalytic hydrogen evolution, Ceram. Int., 44, 546, 10.1016/j.ceramint.2017.09.209
Malengreaux, 2017, Study of the photocatalytic activity of Fe3+, Cr3+, La3+ and Eu3+ single-doped and co-doped TiO2 catalysts produced by aqueous sol-gel processing, J. Alloys Compd., 691, 726, 10.1016/j.jallcom.2016.08.211
Wang, 2015, Y/Eu co-doped TiO2: synthesis and photocatalytic activities under UV-light, J. Rare Earths, 33, 154, 10.1016/S1002-0721(14)60396-3
Al-Shomar, 2021, Synthesis and characterization of Eu3+ doped TiO2 thin films deposited by spray pyrolysis technique for photocatalytic application, Mater. Res. Express, 8, 10.1088/2053-1591/abe315
Zhen, 2019, Eu-TiO(2) nanocomposite with high photoelectrochemical activity for enhanced photocatalysis of rhodaminee B, J. Nanosci. Nanotechnol., 19, 7758, 10.1166/jnn.2019.16733
Paul, 2013, Effective optoelectronic and photocatalytic response of Eu3+-doped TiO2 nanoscale systems synthesized via a rapid condensation technique, J. Mater. Res., 28, 1471, 10.1557/jmr.2013.122
Jung, 2020, Assessing the photocatalytic activity of europium doped TiO2 using liquid phase plasma process on acetylsalicylic acid, Catal. Today
Rajeswari, 2019, Core-shell synergy and Eu3+ doping in boosting charge transfer in Eu3+ doped TiO2-carbon core-shell nanohybrids: sustainable synthesis and visible light-driven photocatalysis, Appl. Surf. Sci., 492, 473, 10.1016/j.apsusc.2019.06.169
Serga, 2021, Study of phase composition, photocatalytic activity, and photoluminescence of TiO2 with Eu additive produced by the extraction-pyrolytic method, J. Mater. Res. Technol., 13, 2350, 10.1016/j.jmrt.2021.06.029
Jiang, 2013, First-principles study of the electronic and optical properties of the (Eu,N)-codoped anatase TiO2 photocatalyst, Comput. Mater. Sci., 68, 234, 10.1016/j.commatsci.2012.09.021
Zhou, 2020, Fabrication of europium-nitrogen co-doped TiO2/Sepiolite nanocomposites and its improved photocatalytic activity in real wastewater treatment, Appl. Clay Sci., 197, 10.1016/j.clay.2020.105791
Lin, 2018, Enhanced visible light photocatalysis of TiO2 by Co-modification with Eu and Au nanoparticles, Solid State Sci., 83, 181, 10.1016/j.solidstatesciences.2018.07.007
Vargas Hernández, 2017, Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2, J. Alloys Compd., 710, 355, 10.1016/j.jallcom.2017.03.275
Shi, 2020, Investigation of enhanced photocatalytic performance of europium doped TiO2 film, Mater. Technol., 36, 552, 10.1080/10667857.2020.1777796
Yi, 2019, Preparation of Eu-doped TiO2 Photocatalyst by Microwave Hydrothermal Method and its Photocatalytic Activity
Zhang, 2007, Structure and luminescence properties of TiO2:er3+ nanocrystals annealed at different temperatures, Mat. Lett., 61, 1658, 10.1016/j.matlet.2006.07.093
Mao, 2014, Up-Conversion Fluorescence characteristics and mechanism of Er3+-doped TiO2 thin films, Vacuum, 102, 38, 10.1016/j.vacuum.2013.10.026
Weber, 2012, Lanthanide modified semiconductor photocatalysts, Catal. Sci. Technol., 2, 683, 10.1039/c2cy00552b
Mazierski, 2018, The role of lanthanides in TiO2-based photocatalysis: a review, Appl. Catal., B, 233, 301, 10.1016/j.apcatb.2018.04.019
Castañeda-Contreras, 2012, Photocatalytic activity of Erbium-doped TiO2 nanoparticles immobilized in macro-porous silica films, Mater. Res. Bull., 47, 290, 10.1016/j.materresbull.2011.11.021
Liang, 2006, The effect of erbium on the adsorption and photodegradation of orange I in Aqueous Er3+-TiO2 suspension, J. Hazard. Mater., 138, 471, 10.1016/j.jhazmat.2006.05.066
Reszczyńska, 2015, Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) Titania Photocatalysts, Appl. Catal., B, 163, 40, 10.1016/j.apcatb.2014.07.010
Xu, 2010, Influence of rare earth co-dopant on the photocatalytic property of TiO2 nano-particles, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 25, 370, 10.1007/s11595-010-0003-5
Fang, 2016, Optical and Photocatalytic Properties of Er3+ and/or Yb3+ doped TiO2 Photocatalysts, J. Mater. Sci.: Mater. Electron., 28, 474
Obregon, 2012, Evidence of upconversion luminescence contribution to the improved photoactivity of Erbium doped TiO2 Systems, Chem. Commun., 48, 7865, 10.1039/c2cc33391k
Obregón, 2013, High-Performance Er3+–TiO2 System: dual Up-conversion and electronic role of the lanthanide, J. Catal., 299, 298, 10.1016/j.jcat.2012.12.021
Zheng, 2014, Electrospun nanofibers of Er3+-doped TiO2 with photocatalytic activity beyond the absorption edge, J. Solid State Chem., 210, 206, 10.1016/j.jssc.2013.11.029
Yang, 2010, TiO2 nanofibrous films as efficient photocatalysts under solar simulated light, Mater. Lett., 64, 147, 10.1016/j.matlet.2009.10.028
Li, 2015, Synthesis and photocatalytic activity of TiO2 nanotubes Co-doped by erbium ions, Appl. Surf. Sci., 328, 115, 10.1016/j.apsusc.2014.12.054
Mazierski, 2017, Enhanced photocatalytic properties of lanthanide-TiO2 nanotubes: an experimental and theoretical study, Appl. Catal., B, 205, 376, 10.1016/j.apcatb.2016.12.044
Mignotte, 2001, EXAFS studies on Erbium-doped TiO2 and ZrO2 Sol-gel thin films, J. Non-Cryst. Solids, 291, 56, 10.1016/S0022-3093(01)00805-5
Xu, 2002, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 Nanoparticles, J. Catal., 207, 151, 10.1006/jcat.2002.3539
Salhi, 2016, Efficient green and red up-conversion emissions in Er/Yb co-doped TiO2 Nanopowders prepared by hydrothermal-assisted Sol–gel process, J. Lumin., 176, 250, 10.1016/j.jlumin.2016.03.011
Méndez-Ramos, 2013, Turning into the Blue: materials for Enhancing TiO2 Photocatalysis by Up-Conversion Photonics, RSC Adv., 3, 23028, 10.1039/c3ra44342f