The role of Cerium, Europium and Erbium doped TiO2 photocatalysts in water treatment: A mini-review

Chemical Engineering Journal Advances - Tập 10 - Trang 100268 - 2022
Erik Cerrato1, Elisa Gaggero2, Paola Calza2, Maria Cristina Paganini2
1INRIM Istituto Nazionale di Ricerca Metrologica, I- 10135 Torino, Italy
2Department of Chemistry and NIS, University of Turin, Via P. Giuria 7, 10125 Torino, Italy

Tài liệu tham khảo

Golovko, 2021, Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems, Sci. Total Environ., 754, 10.1016/j.scitotenv.2020.142122 Baken, 2018, Toxicological risk assessment and prioritization of drinking water relevant contaminants of emerging concern, Environ. Int., 118, 293, 10.1016/j.envint.2018.05.006 Kasonga, 2021, Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: a review, J. Environ. Manage., 277, 10.1016/j.jenvman.2020.111485 Matafonova, 2018, Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: a review, Water Res., 132, 177, 10.1016/j.watres.2017.12.079 Li, 2019, The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: a mini-review, Chin. Chem. Lett., 30, 2139, 10.1016/j.cclet.2019.04.057 Machulek Jr, 2013, Application of different advanced oxidation processes for the degradation of organic pollutants, Organic pollutants-Monitoring, risk and treatment, InTech., 141 López-Muñoz, 2011, Mercury removal from aqueous solutions of HgCl2 by heterogeneous photocatalysis with TiO2, Appl. Catal. B, 104, 220, 10.1016/j.apcatb.2011.03.029 Belver, 2019, Chapter 22 - Semiconductor Photocatalysis for Water Purification, 581 Cassaignon, 2013, Titanium Dioxide in Photocatalysis, Nanomaterials: A Danger or a Promise?, 153 Saqib, 2016, A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater, Environ. Sci. Pollut. Res. Int., 23, 15941, 10.1007/s11356-016-6984-7 Barakat, 2016, Photocatalytic activity enhancement of Titanium Dioxide Nanoparticles, Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles, 1 Qin, 2011, Dye-sensitized TiO2 film with bifunctionalized zones for photocatalytic degradation of 4-cholophenol, J. Hazard. Mater., 192, 599, 10.1016/j.jhazmat.2011.05.059 Chowdhury, 2012, Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: parametric and Kinetic study, Ind. Eng. Chem. Res., 51, 4523, 10.1021/ie2025213 Subramanian, 2001, Semiconductor−metal composite nanostructures. to what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?, J. Phys. Chem. B, 105, 11439, 10.1021/jp011118k Sakthivel, 2004, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res., 38, 3001, 10.1016/j.watres.2004.04.046 Bhatia, 2016, Transition metal doped TiO2 mediated photocatalytic degradation of anti-inflammatory drug under solar irradiations, J. Environ. Chem. Eng., 4, 1267, 10.1016/j.jece.2016.01.032 Karuppasamy, 2021, An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation, J. Environ. Chem. Eng., 9, 10.1016/j.jece.2021.105254 Paola, 2001, Transition metal doped TiO2: physical properties and photocatalytic behaviour, Int. J. Photoenergy, 3, 10.1155/S1110662X01000216 Tang, 2021, Novel p-n heterojunction Bi2O3/Ti3+-TiO2 photocatalyst enables the complete removal of tetracyclines under visible light, Chem. Eng. J., 417, 10.1016/j.cej.2020.128058 Xue, 2019, Constructing a Z-scheme Heterojunction of Egg-Like Core@shell CdS@TiO2 Photocatalyst via a Facile Reflux Method for Enhanced Photocatalytic Performance, Nanomaterials, 9, 10.3390/nano9020222 Liu, 2017, Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core–shell structure for visible-light photocatalytic degradation, Chin. J. Catal., 38, 1052, 10.1016/S1872-2067(17)62845-6 Wu, 2010, Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible-light activity, J. Alloys Compd., 502, 289, 10.1016/j.jallcom.2010.04.189 Li, 2015, A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol–gel method, Appl. Surf. Sci., 344, 112, 10.1016/j.apsusc.2015.03.071 Umebayashi, 2002, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett., 81, 454, 10.1063/1.1493647 Vieira, 2021, Tuning the Photoactivity of TiO2 Nanoarchitectures doped with Cerium or Neodymium and application to color removal from wastewaters, Environ. Technol., 42, 1038, 10.1080/09593330.2019.1651402 Makdee, 2018, Effects of Ce Addition on the Properties and Photocatalytic Activity of TiO2, Investigated by X-ray Absorption Spectroscopy, Mater. Chem. Phys., 213, 431, 10.1016/j.matchemphys.2018.04.016 Gong, 2013, Preparation and characterization of cerium-doped titanium dioxide/ultrahigh-molecular-weight polyethylene porous composites with excellent photocatalytic activity, J. Appl. Polym. Sci., 129, 1212, 10.1002/app.38728 Tong, 2007, Preparation of Ce–TiO2 Catalysts by Controlled Hydrolysis of Titanium Alkoxide based on Esterification reaction and study on its photocatalytic activity, J. Colloid Interface Sci., 315, 382, 10.1016/j.jcis.2007.06.051 Sun, 2014, Synthesis, Characterization of Ce-doped TiO2 Nanotubes with high visible light photocatalytic activity, Catal. Lett., 144, 2107, 10.1007/s10562-014-1377-3 Wang, 2016, Enhanced photocatalytic properties of reusable TiO2-loaded natural porous minerals in dye wastewater purification, Powder Technol., 302, 426, 10.1016/j.powtec.2016.09.003 Kasinathan, 2016, Photodegradation of Organic Pollutants RhB Dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications, Sci. Rep., 6, 1, 10.1038/srep38064 Choudhury, 2012, Extending photocatalytic activity of TiO2 nanomaterials: a danger or a promise? abbreviation, Photochem. Photobiol., 88, 257, 10.1111/j.1751-1097.2011.01064.x Ma, 2009, Hierarchically structured squama-like Cerium-Doped Titania: synthesis, Photoactivity, and Catalytic CO Oxidation, J. Phys. Chem. C, 113, 16658, 10.1021/jp906187g Duan, 2012, Photocatalytic degradation of methyl orange on Ce-TiO2 under visible light irradiation, Adv. Mater. Res., 529, 528, 10.4028/www.scientific.net/AMR.529.528 Liu, 2014, The preparation, characterization and photocatalytic activity of radical-shaped CeO2/ZnO microstructures, Ceram. Int., 40, 4019, 10.1016/j.ceramint.2013.08.053 Yao, 2014, Preparation, characterization and photocatalytic activity of cerium-doped titanium dioxide supported on activated carbon fiber composite, Indian J. Chem., 53A, 665 Xu, 2009, Study on photocatalytic performance and degradation kinetics of x-3b with lanthanide-modified titanium dioxide under solar and UV illumination, J. Hazard. Mater., 164, 762, 10.1016/j.jhazmat.2008.08.108 Santiago-Morales, 2013, Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluen, Water Res., 47, 5546, 10.1016/j.watres.2013.06.030 Li, 2005, Enhanced photocatalytic activity of Ce3+–TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control, Appl. Catal., A, 285, 181, 10.1016/j.apcata.2005.02.025 Shaari, 2012, Synthesis and characterization of CNT/Ce-TiO2 nanocomposite for Phenol degradation, J. Rare Earths, 30, 651, 10.1016/S1002-0721(12)60107-0 He, 2021, Photocatalytic degradation of deoxynivalenol using cerium doped titanium dioxide under ultraviolet light irradiation, Toxins (Basel), 13, 481, 10.3390/toxins13070481 Xue, 2011, Preparation of Titania nanotubes doped with cerium and their photocatalytic activity for glyphosate, Chem. Eng. J., 167, 397, 10.1016/j.cej.2011.01.007 Behera, 2021, Improved Photodegradation and antimicrobial activity of hydrothermally synthesized 0.2Ce-TiO2/RGO under visible light, Colloids Surf., A, 620, 1265531, 10.1016/j.colsurfa.2021.126553 Galindo, 2008, Photodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid on Nanocrystalline TiO2–CeO2 Sol–Gel Catalysts, J. Mol. Catal. A: Chem., 281, 119, 10.1016/j.molcata.2007.10.008 López, 2004, Porosity, structural and fractal study of Sol–Gel TiO2–CeO2 mixed oxides, J. Solid State Chem., 177, 1873, 10.1016/j.jssc.2004.01.013 Fang, 2007, Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides, Appl. Surf. Sci., 253, 8952, 10.1016/j.apsusc.2007.05.013 Liu, 2005, Preparation and Characterization of Cerium Oxide doped TiO2 Nanoparticles, J. Phys. Chem. Solids, 66, 161, 10.1016/j.jpcs.2004.09.002 Liu, 2014, Preparation of cerium modified titanium dioxide nanoparticles and investigation of their visible light photocatalytic performance, Int. J. Photoenergy, 1 Vieira, 2021, Tuning the photoactivity of TiO2 nanoarchitectures doped with cerium or neodymium and application to colour removal from wastewaters, Environ. Technol., 42, 1038, 10.1080/09593330.2019.1651402 Gionco, 2013, Structural and spectroscopic characterization of CeO2-TiO2 mixed oxides, J. Mater. Chem. A, 10918, 10.1039/c3ta12018j Martos, 2008, Sol–Gel synthesis of tunable cerium Titanate materials, Eur. J. Inorg. Chem., 2008, 3163, 10.1002/ejic.200800303 Michal, 2014, Photocatalytic and photodisinfectant activity of sulfated and Eu doped anatase against clinically important microorganisms, Ceram. Int., 40, 5745, 10.1016/j.ceramint.2013.11.013 Leostean, 2013, Properties of Eu doped TiO2 nanoparticles prepared by using organic additives, J. Alloys Compd., 575, 29, 10.1016/j.jallcom.2013.04.067 Gohr, 2020, Facile hydrothermal synthesis of Sm and Eu doped TiO2/graphene oxide nanocomposites for photocatalytic applications, Egypt. J. Chem., 63, 1359 Caschera, 2018, Fabrication of Eu-TiO2 NCs functionalized cotton textile as a multifunctional photocatalyst for dye pollutants degradation, Appl. Surf. Sci., 427, 81, 10.1016/j.apsusc.2017.08.015 Khade, 2017, Enhanced photocatalytic activity of europium doped TiO2 under sunlight for the degradation of methyl orange, J. Mater. Sci. Mater. Electron., 28, 11002, 10.1007/s10854-017-6883-9 Khalid, 2018, The role of graphene and europium on TiO2 performance for photocatalytic hydrogen evolution, Ceram. Int., 44, 546, 10.1016/j.ceramint.2017.09.209 Malengreaux, 2017, Study of the photocatalytic activity of Fe3+, Cr3+, La3+ and Eu3+ single-doped and co-doped TiO2 catalysts produced by aqueous sol-gel processing, J. Alloys Compd., 691, 726, 10.1016/j.jallcom.2016.08.211 Wang, 2015, Y/Eu co-doped TiO2: synthesis and photocatalytic activities under UV-light, J. Rare Earths, 33, 154, 10.1016/S1002-0721(14)60396-3 Al-Shomar, 2021, Synthesis and characterization of Eu3+ doped TiO2 thin films deposited by spray pyrolysis technique for photocatalytic application, Mater. Res. Express, 8, 10.1088/2053-1591/abe315 Zhen, 2019, Eu-TiO(2) nanocomposite with high photoelectrochemical activity for enhanced photocatalysis of rhodaminee B, J. Nanosci. Nanotechnol., 19, 7758, 10.1166/jnn.2019.16733 Paul, 2013, Effective optoelectronic and photocatalytic response of Eu3+-doped TiO2 nanoscale systems synthesized via a rapid condensation technique, J. Mater. Res., 28, 1471, 10.1557/jmr.2013.122 Jung, 2020, Assessing the photocatalytic activity of europium doped TiO2 using liquid phase plasma process on acetylsalicylic acid, Catal. Today Rajeswari, 2019, Core-shell synergy and Eu3+ doping in boosting charge transfer in Eu3+ doped TiO2-carbon core-shell nanohybrids: sustainable synthesis and visible light-driven photocatalysis, Appl. Surf. Sci., 492, 473, 10.1016/j.apsusc.2019.06.169 Serga, 2021, Study of phase composition, photocatalytic activity, and photoluminescence of TiO2 with Eu additive produced by the extraction-pyrolytic method, J. Mater. Res. Technol., 13, 2350, 10.1016/j.jmrt.2021.06.029 Jiang, 2013, First-principles study of the electronic and optical properties of the (Eu,N)-codoped anatase TiO2 photocatalyst, Comput. Mater. Sci., 68, 234, 10.1016/j.commatsci.2012.09.021 Zhou, 2020, Fabrication of europium-nitrogen co-doped TiO2/Sepiolite nanocomposites and its improved photocatalytic activity in real wastewater treatment, Appl. Clay Sci., 197, 10.1016/j.clay.2020.105791 Lin, 2018, Enhanced visible light photocatalysis of TiO2 by Co-modification with Eu and Au nanoparticles, Solid State Sci., 83, 181, 10.1016/j.solidstatesciences.2018.07.007 Vargas Hernández, 2017, Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2, J. Alloys Compd., 710, 355, 10.1016/j.jallcom.2017.03.275 Shi, 2020, Investigation of enhanced photocatalytic performance of europium doped TiO2 film, Mater. Technol., 36, 552, 10.1080/10667857.2020.1777796 Yi, 2019, Preparation of Eu-doped TiO2 Photocatalyst by Microwave Hydrothermal Method and its Photocatalytic Activity Zhang, 2007, Structure and luminescence properties of TiO2:er3+ nanocrystals annealed at different temperatures, Mat. Lett., 61, 1658, 10.1016/j.matlet.2006.07.093 Mao, 2014, Up-Conversion Fluorescence characteristics and mechanism of Er3+-doped TiO2 thin films, Vacuum, 102, 38, 10.1016/j.vacuum.2013.10.026 Weber, 2012, Lanthanide modified semiconductor photocatalysts, Catal. Sci. Technol., 2, 683, 10.1039/c2cy00552b Mazierski, 2018, The role of lanthanides in TiO2-based photocatalysis: a review, Appl. Catal., B, 233, 301, 10.1016/j.apcatb.2018.04.019 Castañeda-Contreras, 2012, Photocatalytic activity of Erbium-doped TiO2 nanoparticles immobilized in macro-porous silica films, Mater. Res. Bull., 47, 290, 10.1016/j.materresbull.2011.11.021 Liang, 2006, The effect of erbium on the adsorption and photodegradation of orange I in Aqueous Er3+-TiO2 suspension, J. Hazard. Mater., 138, 471, 10.1016/j.jhazmat.2006.05.066 Reszczyńska, 2015, Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) Titania Photocatalysts, Appl. Catal., B, 163, 40, 10.1016/j.apcatb.2014.07.010 Xu, 2010, Influence of rare earth co-dopant on the photocatalytic property of TiO2 nano-particles, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 25, 370, 10.1007/s11595-010-0003-5 Fang, 2016, Optical and Photocatalytic Properties of Er3+ and/or Yb3+ doped TiO2 Photocatalysts, J. Mater. Sci.: Mater. Electron., 28, 474 Obregon, 2012, Evidence of upconversion luminescence contribution to the improved photoactivity of Erbium doped TiO2 Systems, Chem. Commun., 48, 7865, 10.1039/c2cc33391k Obregón, 2013, High-Performance Er3+–TiO2 System: dual Up-conversion and electronic role of the lanthanide, J. Catal., 299, 298, 10.1016/j.jcat.2012.12.021 Zheng, 2014, Electrospun nanofibers of Er3+-doped TiO2 with photocatalytic activity beyond the absorption edge, J. Solid State Chem., 210, 206, 10.1016/j.jssc.2013.11.029 Yang, 2010, TiO2 nanofibrous films as efficient photocatalysts under solar simulated light, Mater. Lett., 64, 147, 10.1016/j.matlet.2009.10.028 Li, 2015, Synthesis and photocatalytic activity of TiO2 nanotubes Co-doped by erbium ions, Appl. Surf. Sci., 328, 115, 10.1016/j.apsusc.2014.12.054 Mazierski, 2017, Enhanced photocatalytic properties of lanthanide-TiO2 nanotubes: an experimental and theoretical study, Appl. Catal., B, 205, 376, 10.1016/j.apcatb.2016.12.044 Mignotte, 2001, EXAFS studies on Erbium-doped TiO2 and ZrO2 Sol-gel thin films, J. Non-Cryst. Solids, 291, 56, 10.1016/S0022-3093(01)00805-5 Xu, 2002, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 Nanoparticles, J. Catal., 207, 151, 10.1006/jcat.2002.3539 Salhi, 2016, Efficient green and red up-conversion emissions in Er/Yb co-doped TiO2 Nanopowders prepared by hydrothermal-assisted Sol–gel process, J. Lumin., 176, 250, 10.1016/j.jlumin.2016.03.011 Méndez-Ramos, 2013, Turning into the Blue: materials for Enhancing TiO2 Photocatalysis by Up-Conversion Photonics, RSC Adv., 3, 23028, 10.1039/c3ra44342f