Vai trò của biểu hiện CD34 và sự hợp nhất tế bào trong khả năng tái tạo của tế bào tiền thân cơ

Journal of Cell Science - Tập 115 Số 22 - Trang 4361-4374 - 2002
Roman Jankowski1,2, Bridget M. Deasy1,2, Baohong Cao2, Charley Gates2, Johnny Huard1,3,2
1Bioengineering Department, University of Pittsburgh, Pittsburgh, PA 15213, USA
2Growth and Development Laboratory, Children's Hospital of Pittsburgh, 4151 Rangos Research Center, Pittsburgh, PA 15213, USA
3Departments of Orthopaedic Surgery and Molecular Genetics and Biochemistry, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15260, USA

Tóm tắt

Việc phân loại các tiểu thế cơ xương thường được thực hiện độc lập với hiệu suất chức năng của chúng sau khi chuyển giao. Sử dụng kỹ thuật tiền lớp, kỹ thuật tách biệt tế bào dựa trên các đặc điểm bám dính biến đổi, chúng tôi đã nghiên cứu việc sử dụng các protein bề mặt tế bào để có thể xác định các tiền thân có khả năng tái tạo nâng cao. Dựa trên các nghiên cứu trước đó, chúng tôi đã sử dụng phân loại tế bào để điều tra sự biểu hiện kháng nguyên tế bào gốc-1 (Sca-1) và CD34 trên các quần thể cơ xương có các đặc điểm bám dính muộn. Chúng tôi đã so sánh hiệu quả tái tạo của các tiền thân được phân loại này, cũng như các quần thể tế bào thể hiện đặc điểm bám dính sớm, bằng cách định lượng khả năng của chúng trong việc tái tạo cơ xương và phục hồi dystrophin sau khi được chuyển giao vào cơ chủ loài dị hình.

Việc xác định và khai thác các quần thể bám dính muộn dựa trên sự biểu hiện của CD34 dẫn đến sự tái tạo khác biệt, với các quần thể tích cực CD34 thể hiện sự cải thiện đáng kể trong việc phục hồi dystrophin so với cả các quần thể âm tính CD34 và các quần thể tế bào bám dính sớm. Khả năng tái tạo được tìm thấy tương ứng với mức độ cam kết cơ xương, được xác định bởi sự biểu hiện yếu tố điều hòa cơ xương, cũng như tỷ lệ và mức độ phân hóa và hợp nhất tế bào được kích thích. Những kết quả này cho thấy khả năng tách biệt các tiểu quần thể cơ xương có thể định nghĩa dựa trên sự biểu hiện của CD34 và làm sáng tỏ các ý nghĩa tiềm năng của việc xác định hành vi và đặc điểm hình thái tế bào cơ xương liên quan đến khả năng tái tạo của chúng trong cơ thể sống.

Từ khóa


Tài liệu tham khảo

Baroffio, A., Hamman, M., Bernheim, L., Bochaton-Piallat, M., Gabbiani, G. and Bader, C. (1996). Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells. Differentiation60, 47-57.

Beauchamp, J. R., Morgan, J. E., Pagel, C. N. and Partridge, T. A. (1999). Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J. Cell Biol.144, 1113-1121.

Beauchamp, J. R., Heslop, L., Yu, D. S. W., Tajbakhsh, S., Kelly, R. G., Wernig, A., Buckingham, M. E., Partridge, T. A. and Zammit, P. S. (2000). Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J. Cell Biol.151, 1221-1233.

Bischoff, R. (1994). The satellite cell and muscle regeneration. In Myology. (ed. A. G. Engel and C. Franzini-Armstrong), pp. 97-118. New York: McGraw-Hill.

Cornelison, D. and Wold, B. (1997). Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev. Biol.191, 270-283.

Deasy, B., Qu-Peterson, Z., Greenberger, J. and Huard, J. (2002). Mechanisms of muscle stem cell expansion with cytokines. Stem Cells20, 50-60.

Emslie-Smith, A., Arahata, K. and Engel, A. (1989). Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies. Hum. Pathol.20, 224-231.

Fackler, M. J., Krause, D. S., Smith, O. M., Civin, C. I. and May, W. S. (1995). Full-length but not truncated CD34 inhibits hematopoietic cell differentiation of M1 cells. Blood11, 3040-3047.

Fan, Y., Maley, M., Beilharz, M. and Grounds, M. (1996). Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve19, 853-860.

Ferrer, A., Wells, K. and Wells, D. (2000). Immune responses to dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Gene Ther.7, 1439-1446.

Goodell, M. A. (1999). CD34+ or CD34-: does it really matter? Blood94, 2545-2547.

Greenberger, J. S., Goff, J. P., Bush, J., Bahnson, A., Koebler, D., Athanassiou, H., Domach, M. and Houk, R. K. (2000). Expansion of hematopoietic stem cells in vitro as a model system for human tissue engineering. Orthop. Clin. N. Am.31, 499-510.

Grounds, M. (1990). The proliferation and fusion of myoblasts in vivo. In Myoblast Transfer Therapy (ed. R. Griggs and G. Karpati), pp. 101-104. New York: Plenum Press.

Guerette, B., Asselin, I., Skuk, D., Entman, M. and Tremblay, J. P. (1997). Control of inflammatory damage by anti-LFA-1: increase success of myoblast transplantation. Cell Transplant.6, 101-107.

Gussoni, E., Pavlath, G. K., Lanctot, A. M., Sharma, K. R., Miller, R. G., Steinman, L. and Blau, H. M. (1992). Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature356, 435-438.

Gussoni, E., Soneoka, Y., Strickland, C., Buzney, E., Khan, M., Flint, A. F., Kunkel, L. M. and Mulligan, R. C. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature401, 390-394.

Huard, J., Acsadi, G., Jani, A., Massie, B. and Karpati, G. (1994). Gene transfer into skeletal muscles by isogenic myoblasts. Hum. Gene Ther.5, 949-958.

Jackson, K. A., Mi, T. and Goodell, M. (1999). Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc. Natl. Acad. Sci. USA96, 14482-14486.

Jankowski, R. J., Haluszczak, C., Trucco, M. and Huard, J. (2001). Flow cytometric characterization of myogenic cell populations obtained via the preplate technique: potential for rapid isolation of muscle-derived stem cells. Hum. Gene Ther.12, 619-628.

Karpati, G. (1990). Immunological aspects of histoincompatible myoblast transfer into non-tolerant hosts. In Myoblast Transfer Therapy (ed. R. Griggs, and G. Karpati), pp. 31-34. New York: Plenum Press.

Kinoshita, I., Huard, J. and Tremblay, J. P. (1994). Utilization of myoblasts from transgenic mice to evaluate the efficacy of myoblast transplantation. Muscle Nerve17, 975-980.

Kitzmann, M., Carnac, G., Vandromme, M., Primig, M., Lamb, N. and Fernandez, A. (1998). The muscle regulatory factors MyoD and Myf-5 undergo distinct cell cycle-specific expression in muscle cells. J. Cell Biol.142, 1447-1459.

Krause, D. S., Fackler, M. J., Civin, C. I. and May, W. S. (1996). CD34: Structure, biology, and clinical utility. Blood87, 1-13.

Lee, J. Y., Qu-Peterson, Z., Cao, B., Kimura, S., Jankowski, R., Cummins, J., Usas, A., Gates, C., Robbins, P., Wernig, A. and Huard, J. (2000). Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J. Cell Biol.150, 1085-1099.

Lindon, C., Montarras, D. and Pinset, C. (1998). Cell cycle-regulated expression of the muscle determination factor Myf-5 in proliferating myoblasts. J. Cell Biol.140, 111-118.

McDouall, R., Dunn, M. and Dubowitz, V. (1989). Expression of class I and class II MHC antigens in neuromuscular diseases. J. Neurol. Sci.89, 213-226.

Megeney, L. A. and Rudnicki, M. A. (1995). Determination versus differentiation and the MyoD family of transcription factors. Biochem. Cell Biol.73, 723-732.

Mendell, J. R., Kissel, J. T., Amato, A. A., King, W., Signore, L., Prior, T. W., Sahenk, Z., Benson, S., McAndrew, P. E., Rice, R. et al. (1995). Myoblast transfer in the treatment of Duchenne's muscular dystrophy. New Engl. J. Med.333, 832-838.

Merly, F., Huard, J., Asselin, I., Robbins, P. D. and Tremblay, J. P. (1998). Anti-inflammatory effect of transforming growth factor-β1 in myoblast transplantation. Transplantation65, 793-799.

Miller, J. L., Schafer, L. and Dominov, J. (1999). Seeking muscle stem cells. Curr. Top. Dev. Biol.43, 191-214.

Molnar, G., Ho, M. L. and Schroedl, N. A. (1996). Evidence for multiple satellite cell populations and a non-myogenic cell type that is regulated differently in regenerating and growing skeletal muscle. Tissue Cell28, 547-556.

Morgan, J., Hoffman, E. and Partridge, T. (1990). Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse. J. Cell Biol.111, 2437-2449.

Neumeyer, A. M., McKenna-Yasek, D., Zawadzka, A., Hoffman, E. P., Pegoraro, E., Hunter, R. G., Munsat, T. L. and Brown, R. H. (1998). Pilot study of myoblast transfer in the treatment of Becker muscular dystrophy. Neurology51, 589-592.

Ohtsuka, Y., Udaka, K., Yamashiro, Y., Yagita, H. and Okumura, K. (1998). Dystrophin acts as a transplantation rejection antigen in dystrophin-deficient mice: implication for gene therapy. J. Immunol.160, 4635-4640.

Okada, S., Nakauchi, H., Nagayoshi, K., Nishikawa, S., Miura, Y. and Suda, T. (1992). In vivo and in vitro stem cell function of c-kit and Sca-1-positive murine hematopoietic cells. Blood80, 3044-3050.

Osawa, M., Hanada, K., Hamada, H. and Nakauchi, H. (1996). Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science273, 242-245.

Pavlath, G., Rando, T. and Blau, H. (1994). Transient immunosuppressive treatment leads to long-term retention of allogenic myoblasts in hybrid myofibers. J. Cell Biol.127, 1923-1932.

Ponder, B., Wilkinson, M., Wood, M. and Westwood, J. (1983). Immunohistochemical demonstration of H2 antigens in mouse tissue sections. J. Hist. Cytochem.31, 911-919.

Qu, Z. and Huard, J. (2000). Matching host muscle and donor myoblasts for myosin heavy chain improves myoblast transfer therapy. Gene Ther.7, 428-437.

Qu, Z., Balkir, L., van Deutekom, J. C. T., Robbins, P., Pruchnic, R. and Huard, J. (1998). Development of approaches to improve cell survival in myoblast transfer therapy. J. Cell Biol.142, 1257-1267.

Qu-Petersen, Z., Deasy, B., Jankowski, R., Ikezawa, M., Cummins, J., Pruchnic, R., Mytinger, J., Cao, B., Gates, C., Wernig, A. and Huard, J. (2002). Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J. Cell Biol.157, 851-864.

Rando, T. and Blau, H. M. (1994). Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J. Cell Biol.125, 1275-1287.

Richler, C. and Yaffe, D. (1970). The in vitro cultivation and differentiation capacities of myogenic cell lines. Dev. Biol.23, 1-22.

Rohwedel, J., Horak, V., Hebrok, M., Fuchtbauer, E. and Wobus, A. M. (1995). M-twist expression inhibits mouse embryonic stem cell-derived myogenic differentiation in vitro. Exp. Cell Res.220, 92-100.

Rudnicki, M. A. and Jaenisch, R. (1995). The MyoD family of transcription factors and skeletal myogenesis. Bioessays17, 203-209.

Sabourin, L. C., Girgis-Gabardo, A., Seale, P., Asakura, A. and Rudnicki, M. A. (1999). Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J. Cell Biol.144, 631-643.

Schultz, E. (1996). Satellite cell proliferative compartments in growing skeletal muscles. Dev. Biol.175, 84-94.

Schultz, E. and Lipton, B. H. (1982). Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech. Ageing Dev.20, 377-383.

Seale, P. and Rudnicki, M. A. (2000). A new look at the origin, function, and stem cell status of muscle satellite cells. Dev. Biol.218, 115-124.

Sherley, J. L., Stadler, P. B. and Stadler, J. S. (1995). A quantitative method for the analysis of mammalian cell proliferation in culture in terms of dividing and non-dividing cells. Cell Prolif.28, 137-144.

Smith, C. K., Janney, M. J. and Allen, R. E. (1994). Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells. J. Cell Physiol.159, 379-385.

Smythe, G., Hodgetts, S. and Grounds, M. (2001). Problems and solutions in myoblast transfer therapy. J. Cell. Mol. Med.5, 33-47.

Torrente, Y., Tremblay, J. P., Pisati, F., Belicchi, M., Rossi, B., Sironi, M., Fortunato, F., El Fahime, M., D'Angelo, M. G., Caron, N. J. et al. (2001). Intraarterial injection of muscle-derived CD34+Sca-1+ stem cells restores dystrophin in mdx mice. J. Cell Biol.152, 335-348.

Tremblay, J. P., Malouin, F., Roy, R., Huard, J., Bouchard, J. P., Satoh, A. and Richards, C. L. (1993). Results of triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant.2, 99-112.

Vanderwinden, J. M., Rumessen, J., de Laet, M., Vanderhaeghen, J. and Schiffmann, S. N. (1999). CD34+ cells in the human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of cajal. Lab. Invest.79, 59-65.

Vilquin, J., Wagner, E., Kinoshita, I., Roy, R. and Tremblay, J. (1995). Successful histocompatible myoblast transplantation in dystrophin-deficient mdx mouse despite the production of antibodies against dystrophin. J. Cell Biol.131, 975-988.

Weintraub, H. (1993). The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell75, 1241-1244.

Yamazaki, K. and Eyden, B. P. (1995). Ultrastructural and immunohistochemical observations on the intralobular fibroblasts of human breast, with observations on the CD34 antigen. J. Submicr. Cytol. Path.27, 309-323.

Yoshida, N., Yoshida, S., Koishi, K., Masuda, K. and Nabeshima, Y. (1998). Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf5 generates `reserve cells'. J. Cell Sci.111, 769-779.

Zammit, P. S. and Beauchamp, J. R. (2001). The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation68, 193-204.