The right angle: precise numerical orthogonality in eigenstates
Tóm tắt
Solutions of the Schrodinger equation that pertain to different energies are orthogonal by virtue of quantum dynamics. However, when we obtain such solutions numerically using library differential equation solvers, and when the inner product is defined by numerical quadrature, the result is not sufficiently orthogonal for certain purposes. This paper shows how to construct stable finite-difference schemes that preserve accurate numerical orthogonality of the solutions.
Từ khóa
#Probes #Wave functions #Quantum mechanics #Photovoltaic effects #Mesons #Absorption #Vacuum systems #Electrons #Radiofrequency interferenceTài liệu tham khảo
titchmarsh, 1937, Theory of Fourier Integrals
goldberger, 1964, Collision Theory
hulth�n, 1942, über die eigenlösungen der schrödinger-gleichung der deuterons, Arkiv f�r Matematik Astronomi och Fysik, 28, 1
numerov, 1924, determination de l'orbits de la comeacute;ete 1922 d'apreacute;es trois observations, Monthly Notices of the Royal Astronomical Soc, 84, 180
devries, 1994, A First Course in Computational Physics
acton, 1990, Numerical Methods That Work, 10.1090/spec/002
abramowitz, 1965, Handbook of Mathematical Functions, 555
10.1016/0021-9991(68)90017-X
wilkinson, 1965, The Algebraic Eigenvalue Problem
hamming, 1962, Numerical Methods for Scientists and Engineers, 215
10.1103/PhysRevC.17.2151
10.1103/PhysRevC.19.276