The right angle: precise numerical orthogonality in eigenstates

Computing in Science and Engineering - Tập 4 Số 5 - Trang 91-97 - 2002
J.V. Noble1
1Dept. of Phys., Virginia Univ., Charlottesville, VA, USA

Tóm tắt

Solutions of the Schrodinger equation that pertain to different energies are orthogonal by virtue of quantum dynamics. However, when we obtain such solutions numerically using library differential equation solvers, and when the inner product is defined by numerical quadrature, the result is not sufficiently orthogonal for certain purposes. This paper shows how to construct stable finite-difference schemes that preserve accurate numerical orthogonality of the solutions.

Từ khóa

#Probes #Wave functions #Quantum mechanics #Photovoltaic effects #Mesons #Absorption #Vacuum systems #Electrons #Radiofrequency interference

Tài liệu tham khảo

titchmarsh, 1937, Theory of Fourier Integrals goldberger, 1964, Collision Theory hulth�n, 1942, über die eigenlösungen der schrödinger-gleichung der deuterons, Arkiv f�r Matematik Astronomi och Fysik, 28, 1 numerov, 1924, determination de l'orbits de la comeacute;ete 1922 d'apreacute;es trois observations, Monthly Notices of the Royal Astronomical Soc, 84, 180 devries, 1994, A First Course in Computational Physics acton, 1990, Numerical Methods That Work, 10.1090/spec/002 abramowitz, 1965, Handbook of Mathematical Functions, 555 10.1016/0021-9991(68)90017-X wilkinson, 1965, The Algebraic Eigenvalue Problem hamming, 1962, Numerical Methods for Scientists and Engineers, 215 10.1103/PhysRevC.17.2151 10.1103/PhysRevC.19.276