Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phản ứng của hệ sinh thái dưới nước đối với các tác động tương tác của sự suy giảm ozone tầng bình lưu, bức xạ UV và biến đổi khí hậu
Tóm tắt
Sự biến đổi của ozone tầng bình lưu và những thay đổi trong môi trường thủy sinh do biến đổi khí hậu và hoạt động con người đang làm thay đổi mức độ tiếp xúc của các hệ sinh thái thủy sinh với bức xạ UV. Những thay đổi này có những hệ quả đối với sự phân bố của các loài, chu kỳ sinh hóa và các dịch vụ mà các hệ sinh thái thủy sinh cung cấp. Đánh giá bốn năm một lần này trình bày những kiến thức mới nhất về các tương tác đa diện giữa ảnh hưởng của bức xạ UV và biến đổi khí hậu, cùng với các hoạt động nhân tạo khác, và cách mà các điều kiện này đang làm thay đổi các hệ sinh thái thủy sinh. Biến đổi khí hậu dẫn đến sự biến đổi trong độ sâu trộn lẫn, độ dày của lớp băng, thời gian các điều kiện không có băng và việc cung cấp chất hữu cơ hòa tan, tất cả đều có thể làm tăng hoặc giảm mức độ tiếp xúc với bức xạ UV. Các hoạt động nhân tạo phóng thích dầu, bộ lọc UV trong kem chống nắng và vi nhựa vào môi trường thủy sinh sau đó được biến đổi bởi bức xạ UV, thường làm gia tăng các tác động xấu đến các sinh vật thủy sinh và môi trường của chúng. Các tác động của những thay đổi này kết hợp với các yếu tố như sự ấm lên và axit hóa đại dương được xem xét đối với các vi sinh vật dưới nước, tảo lớn, thực vật và động vật (nổi, bơi và gắn). Việc giảm thiểu những hậu quả phá vỡ của những tác động này đối với các dịch vụ thiết yếu được cung cấp bởi các sông, hồ và đại dương trên thế giới (cung cấp nước ngọt, giải trí, vận chuyển và an ninh lương thực) không chỉ cần duy trì tuân thủ Nghị định thư Montreal mà còn cần sự bao gồm rộng rãi hơn về bức xạ UV mặt trời và tác động của nó trong các nghiên cứu và/hoặc mô hình của các hệ sinh thái thủy sinh dưới các điều kiện khí hậu toàn cầu trong tương lai.
Từ khóa
Tài liệu tham khảo
Williamson, C. E., Neale, P. J., Hylander, S., Rose, K. C., Figueroa, F. L., Robinson, S. A., Häder, D.-P., Wängberg, S. -Å., & Worrest, R. C. (2019). The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochemical & Photobiological Sciences, 18(3), 717–746. https://doi.org/10.1039/c8pp90062k
Neale, P. J., Williamson, C. E., & Morris, D. P. (2021). Optical properties of water. In K. Tockner & T. Mehner (Eds.), Encyclopedia of Inland Waters (2nd ed., pp. 73–82). Elsevier.
Overmans, S., & Agustí, S. (2020). Unraveling the seasonality of UV exposure in reef waters of a rapidly warming (sub-)tropical sea. Frontiers in Marine Science, 7, 111. https://doi.org/10.3389/fmars.2020.00111
Overmans, S., Duarte, C. M., Sobrino, C., Iuculano, F., Álvarez-Salgado, X. A., & Agustí, S. (2022). Penetration of Ultraviolet-B radiation in oligotrophic regions of the oceans during the Malaspina 2010 expedition. Journal of Geophysical Research: Oceans.127(5) e2021JC017654. https://doi.org/10.1029/2021jc017654
de Wit, H. A., Valinia, S., Weyhenmeyer, G. A., Futter, M. N., Kortelainen, P., Austnes, K., Hessen, D. O., Räike, A., Laudon, H., & Vuorenmaa, J. (2016). Current browning of surface waters will be further promoted by wetter climate. Environmental Science & Technology Letters, 3(12), 430–435. https://doi.org/10.1021/acs.estlett.6b00396
Zhang, Y., Shi, K., Zhou, Q., Zhou, Y., Zhang, Y., Qin, B., & Deng, J. (2020). Decreasing underwater ultraviolet radiation exposure strongly driven by increasing ultraviolet attenuation in lakes in eastern and southwest China. Science of the Total Environment., 720, 137694. https://doi.org/10.1016/j.scitotenv.2020.137694
Lapierre, J.-F., Collins, S. M., Oliver, S. K., Stanley, E. H., & Wagner, T. (2021). Inconsistent browning of northeastern US lakes despite increased precipitation and recovery from acidification. Ecosphere., 12(3), e03415. https://doi.org/10.1002/ecs2.3415
Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Høgåsen, T., Wilander, A., Skjelkvåle, B. L., Jeffries, D. S., Vuorenmaa, J., Keller, B., Kopácek, J., & Vesely, J. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537. https://doi.org/10.1038/nature06316
Rose, K. C., Greb, S. R., Diebel, M., & Turner, M. G. (2017). Annual precipitation regulates spatial and temporal drivers of lake water clarity. Ecological Applications, 27(2), 632–643. https://doi.org/10.1002/eap.1471
Topp, S. N., Pavelsky, T. M., Stanley, E. H., Yang, X., Griffin, C. G., & Ross, M. R. V. (2021). Multi-decadal improvement in US lake water clarity. Environmental Research Letters., 16(5), 055025. https://doi.org/10.1088/1748-9326/abf002
Wang, S., Li, J., Zhang, B., Lee, Z., Spyrakos, E., Feng, L., Liu, C., Zhao, H., Wu, Y., Zhu, L., Jia, L., Wan, W., Zhang, F., Shen, Q., Tyler, A. N., & Zhang, X. (2020). Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sensing of Environment., 247, 111949. https://doi.org/10.1016/j.rse.2020.111949
Rose, K. C., Neale, P. J., Tzortziou, M., Gallegos, C. L., & Jordan, T. E. (2019). Patterns of spectral, spatial, and long-term variability in light attenuation in an optically complex sub-estuary. Limnology and Oceanography, 64(S1), S257–S272. https://doi.org/10.1002/lno.11005
Lisi, P. J., & Hein, C. L. (2019). Eutrophication drives divergent water clarity responses to decadal variation in lake level. Limnology and Oceanography, 64(S1), S49–S59. https://doi.org/10.1002/lno.11095
Osburn, C. L., Atar, J. N., Boyd, T. J., & Montgomery, M. T. (2019). Antecedent precipitation influences the bacterial processing of terrestrial dissolved organic matter in a North Carolina estuary. Estuarine, Coastal and Shelf Science, 221, 119–131. https://doi.org/10.1016/j.ecss.2019.03.016
Qu, L., Wu, Y., Li, Y., Stubbins, A., Dahlgren, R. A., Chen, N., & Guo, W. (2020). El Niño-driven dry season flushing enhances dissolved organic matter export From a subtropical watershed. Geophysical Research Letters., 47(19), e2020GL089877. https://doi.org/10.1029/2020GL089877
Opdal, A. F., Lindemann, C., & Aksnes, D. L. (2019). Centennial decline in North Sea water clarity causes strong delay in phytoplankton bloom timing. Global Change Biology, 25(11), 3946–3953. https://doi.org/10.1111/gcb.14810
Vizzo, J. I., Cabrerizo, M. J., Villafañe, V. E., & Helbling, E. W. (2021). Input of terrestrial material into coastal Patagonian waters and its effects on phytoplankton communities from the Chubut River Estuary (Argentina). Anthropogenic Pollution of Aquatic Ecosystems (pp. 131–155). Berlin Germany: Springer.
Lønborg, C., McKinna, L. I. W., Slivkoff, M. M., & Carreira, C. (2021). Coloured dissolved organic matter dynamics in the Great barrier reef. Continental Shelf Research., 219, 104395. https://doi.org/10.1016/j.csr.2021.104395
Song, N., & Jiang, H. L. (2020). Coordinated photodegradation and biodegradation of organic matter from macrophyte litter in shallow lake water: dual role of solar irradiation. Water Research., 172, 115516. https://doi.org/10.1016/j.watres.2020.115516
Häder, D.-P., Williamson, C. E., Wangberg, S.-A., Rautio, M., Rose, K. C., Gao, K., Helbling, E. W., Sinha, R. P., & Worrest, R. (2015). Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochemical & Photobiological Sciences, 14(1), 108–126. https://doi.org/10.1039/C4PP90035A
Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A. C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S. A., & Stouffer, R. (2004). Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles., 18(3), 3003. https://doi.org/10.1029/2003GB002134
Somavilla, R., González-Pola, C., & Fernández-Diaz, J. (2017). The warmer the ocean surface, the shallower the mixed layer. How much of this is true? Journal of Geophysical Research Oceans., 122(9), 7698–7716. https://doi.org/10.1002/2017JC013125
Young, I. R., & Ribal, A. (2019). Multiplatform evaluation of global trends in wind speed and wave height. Science, 364(6440), 548–552. https://doi.org/10.1126/science.aav9527
Neale, P. J., & Smyth, R. L. (2018). Are warmer waters, brighter waters? An examination of the irradiance environment of lakes and oceans in a changing climate. In D. P. Hader & K. Gao (Eds.), Aquatic Ecosystems in a Changing Climate (pp. 89–115). USA: CRC.
Sallée, J. B., Pellichero, V., Akhoudas, C., Pauthenet, E., Vignes, L., Schmidtko, S., Garabato, A. N., Sutherland, P., & Kuusela, M. (2021). Summertime increases in upper-ocean stratification and mixed-layer depth. Nature, 591(7851), 592–598. https://doi.org/10.1038/s41586-021-03303-x
Waugh, D. W., Garfinkel, C. I., & Polvani, L. M. (2015). Drivers of the recent tropical expansion in the southern hemisphere: Changing SSTs or ozone depletion? Journal of Climate, 28(16), 6581–6586. https://doi.org/10.1175/jcli-d-15-0138.1
Bernhard, G. H., Bais, A. F., Aucamp, P. J., Klekociuk, A. R., Liley, J. B,. & McKenzie, R. L. (2023). Stratospheric ozone, UV radiation, and climate interactions. Photochemical & Photobiological Sciences. https://doi.org/10.1007/s43630-023-00371-y
Li, K.-X., & Zheng, F. (2022). Effects of a freshening trend on upper-ocean stratification over the central tropical Pacific and their representation by CMIP6 models. Deep Sea Research Part II: Topical Studies in Oceanography., 195, 104999. https://doi.org/10.1016/j.dsr2.2021.104999
Kraemer, B. M., Anneville, O., Chandra, S., Dix, M., Kuusisto, E., Livingstone, D. M., Rimmer, A., Schladow, S. G., Silow, E., Sitoki, L. M., Tamatamah, R., Vadeboncoeur, Y., & McIntyre, P. B. (2015). Morphometry and average temperature affect lake stratification responses to climate change. Geophysical Research Letters, 42(12), 4981–4988. https://doi.org/10.1002/2015GL064097
Stefanidis, K., Varlas, G., Papaioannou, G., Papadopoulos, A., & Dimitriou, E. (2022). Trends of lake temperature, mixing depth and ice cover thickness of European lakes during the last four decades. Science of the Total Environment., 830, 154709. https://doi.org/10.1016/j.scitotenv.2022.154709
Stetler, J., Girdner, S., Mack, J., Winslow, L., Leach, T., & Rose, K. (2020). Atmospheric stilling and warming air temperatures drive long-term changes in lake stratification in a large oligotrophic lake. Limnology Oceanography, 66(3), 954–964. https://doi.org/10.1002/lno.11654
Woolway, R. I., Meinson, P., Nõges, P., Jones, I. D., & Laas, A. (2017). Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake. Climate Change, 141(4), 759–773. https://doi.org/10.1007/s10584-017-1909-0
Vautard, R., Cattiaux, J., Yiou, P., Thépaut, J.-N., & Ciais, P. (2010). Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nature Geoscience, 3(11), 756–761. https://doi.org/10.1038/ngeo979
Zeng, Z., Ziegler, A. D., Searchinger, T., Yang, L., Chen, A., Ju, K., Piao, S., Li, L. Z. X., Ciais, P., Chen, D., Liu, J., Azorin-Molina, C., Chappell, A., Medvigy, D., & Wood, E. F. (2019). A reversal in global terrestrial stilling and its implications for wind energy production. Nature Climate Change, 9(12), 979–985. https://doi.org/10.1038/s41558-019-0622-6
Zhang, Z., Wang, K., Chen, D., Li, J., & Dickinson, R. (2019). Increase in surface friction dominates the observed surface wind speed decline during 1973–2014 in the northern hemisphere lands. Journal Climate, 32(21), 7421–7435. https://doi.org/10.1175/jcli-d-18-0691.1
Pilla, R. M., Williamson, C. E., Zhang, J., Smyth, R. L., Lenters, J. D., Brentrup, J. A., Knoll, L. B., & Fisher, T. J. (2018). Browning-related decreases in water transparency lead to long-term increases in surface water temperature and thermal stratification in two small lakes. Journal of Geophysical Research: Biogeosciences, 123(5), 1651–1665. https://doi.org/10.1029/2017jg004321
Woolway, R. I., Sharma, S., Weyhenmeyer, G. A., Debolskiy, A., Golub, M., Mercado-Bettín, D., Perroud, M., Stepanenko, V., Tan, Z., Grant, L., Ladwig, R., Mesman, J., Moore, T. N., Shatwell, T., Vanderkelen, I., Austin, J. A., DeGasperi, C. L., Dokulil, M., La Fuente, S., Mackay, E. B., et al. (2021). Phenological shifts in lake stratification under climate change. Nature Communications, 12(1), 2318. https://doi.org/10.1038/s41467-021-22657-4
Woolway, R. I., & Merchant, C. J. (2019). Worldwide alteration of lake mixing regimes in response to climate change. Nature Geoscience, 12(4), 271–276. https://doi.org/10.1038/s41561-019-0322-x
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: an overview. Climtic Change, 109(1–2), 5–31. https://doi.org/10.1007/s10584-011-0148-z
Jane, S. F., Hansen, G. J. A., Kraemer, B. M., Leavitt, P. R., Mincer, J. L., North, R. L., Pilla, R. M., Stetler, J. T., Williamson, C. E., Woolway, R. I., Arvola, L., Chandra, S., DeGasperi, C. L., Diemer, L., Dunalska, J., Erina, O., Flaim, G., Grossart, H.-P., Hambright, K. D., Hein, C., et al. (2021). Widespread deoxygenation of temperate lakes. Nature, 594(7861), 66–70. https://doi.org/10.1038/s41586-021-03550-y
Warren, S. G. (2019). Optical properties of ice and snow. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences, 377(2146), 20180161. https://doi.org/10.1098/rsta.2018.0161
Katlein, C., Arndt, S., Belter, H. J., Castellani, G., & Nicolaus, M. (2019). Seasonal evolution of light transmission distributions through Arctic sea ice. Journal of Geophysical Research: Oceans, 124(8), 5418–5435. https://doi.org/10.1029/2018jc014833
Arndt, S., Meiners, K. M., Ricker, R., Krumpen, T., Katlein, C., & Nicolaus, M. (2017). Influence of snow depth and surface flooding on light transmission through Antarctic pack ice. Journal of Geophysical Research Oceans, 122(3), 2108–2119. https://doi.org/10.1002/2016jc012325
Matthes, L. C., Mundy, C. J., Girard, L. S., Babin, M., Verin, G., & Ehn, J. K. (2020). Spatial heterogeneity as a key variable influencing spring-summer progression in UVR and PAR transmission through Arctic sea ice. Frontiers in Marine Science, 7, 183. https://doi.org/10.3389/fmars.2020.00183
Oziel, L., Massicotte, P., Randelhoff, A., Ferland, J., Vladoiu, A., Lacour, L., Galindo, V., Lambert-Girard, S., Dumont, D., Cuypers, Y., Bouruet-Aubertot, P., Mundy, C. J., Ehn, J., Bécu, G., Marec, C., Forget, M. H., Garcia, N., Coupel, P., Raimbault, P., Houssais, M. N., et al. (2019). Environmental factors influencing the seasonal dynamics of spring algal blooms in and beneath sea ice in western Baffin Bay. Elementa Science of the Anthropocene., 7(1), 34. https://doi.org/10.1525/elementa.372
Meier, W. N., Perovich, D., Farrell, S., Haas, C., Hendricks, S., Petty, A. A., Webster, M., Divine, D., Gerland, S., Kaleschke, L., Ricker, R., Steer, A., Tian-Kunze, X., Tschudi, M., & Wood, K. (2021). Sea Ice. In T. A. Moon, M. L. Druckenmiller, & R. L. Thoman (Eds.), Arctic Report Card: Update for 2021. NOAA Technical Report OAR ARC.
Serreze, M. C., & Meier, W. N. (2019). The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to the Antarctic. Annals of the New York Academy of Sciences, 1436(1), 36–53. https://doi.org/10.1111/nyas.13856
Goyal, R., England, M. H., Sen Gupta, A., & Jucker, M. (2019). Reduction in surface climate change achieved by the 1987 Montreal Protocol. Environmental Research Letters., 14(12), 124041. https://doi.org/10.1088/1748-9326/ab4874
Polvani, L. M., Previdi, M., England, M. R., Chiodo, G., & Smith, K. L. (2020). Substantial twentieth-century Arctic warming caused by ozone-depleting substances. Nature Climate Change, 10(2), 130–133. https://doi.org/10.1038/s41558-019-0677-4
Fetterer, F., Knowles, K., Meier, W. N,. Savoie, M., & Windnagel, A.K. (2021). Sea Ice Index, Version 3. National Snow and Ice Data Center. Dataset G02135. https://nsidc.org/data/g02135/versions/3
Moore, J. K., Fu, W., Primeau, F., Britten, G. L., Lindsay, K., Long, M., Doney, S. C., Mahowald, N., Hoffman, F., & Randerson, J. T. (2018). Sustained climate warming drives declining marine biological productivity. Science, 359(6380), 1139. https://doi.org/10.1126/science.aao6379
Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M., & Sharma, S. (2020). Global lake responses to climate change. Nature Reviews Earth & Environment, 1(8), 388–403. https://doi.org/10.1038/s43017-020-0067-5
Sharma, S., Richardson, D. C., Woolway, R. I., Imrit, M. A., Bouffard, D., Blagrave, K., Daly, J., Filazzola, A., Granin, N., Korhonen, J., Magnuson, J., Marszelewski, W., Matsuzaki, S. I. S., Perry, W., Robertson, D. M., Rudstam, L. G., Weyhenmeyer, G. A., & Yao, H. (2021). Loss of ice cover, shifting phenology, and more extreme events in Northern Hemisphere lakes. Journal of Geophysical Research: Biogeosciences., 126(10), e2021JG006348. https://doi.org/10.1029/2021jg006348
Filazzola, A., Blagrave, K., Imrit, M. A., & Sharma, S. (2020). Climate change drives increases in extreme events for lake ice in the Northern Hemisphere. Geophysical Research Letters., 47(18), e2020GL089608. https://doi.org/10.1029/2020gl089608
Sharma, S., Blagrave, K., Magnuson, J. J., O’Reilly, C. M., Oliver, S., Batt, R. D., Magee, M. R., Straile, D., Weyhenmeyer, G. A., Winslow, L., & Woolway, R. I. (2019). Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change, 9(3), 227–231. https://doi.org/10.1038/s41558-018-0393-5
Häder, D. P., & Cabrol, N. A. (2020). Monitoring of solar irradiance in the high Andes. Photochemistry and Photobiology, 96(5), 1133–1139. https://doi.org/10.1111/php.13276
Häder, D.-P., & Barnes, P. W. (2019). Comparing the impacts of climate change on the responses and linkages between terrestrial and aquatic ecosystems. Science of the Total Environment, 682, 239–246. https://doi.org/10.1016/j.scitotenv.2019.05.024
Wu, Y., Zhang, M., Li, Z., Xu, J., & Beardall, J. (2020). Differential responses of growth and photochemical performance of marine diatoms to ocean warming and high light irradiance. Photochemistry and photobiology, 96(5), 1074–1082. https://doi.org/10.1111/php.13268
Li, G., Gao, K., & Gao, G. (2011). Differential impacts of solar UV radiation on photosynthetic carbon fixation from the coastal to offshore surface waters in the South China Sea. Photochemistry and Photobiology, 87(2), 329–334. https://doi.org/10.1111/j.1751-1097.2010.00862.x
Valiñas, M. S., Villafañe, V. E., & Walter Helbling, E. (2018). Effects of global change on aquatic lower trophic levels of coastal south west Atlantic Ocean environments. In D. P. Häder & K. Gao (Eds.), Aquatic Ecosystems in a Changing Climate (pp. 116–145). CRC Press
Chen, J., Wang, H., Yang, A. Q., Si, R. R., & Guan, W. C. (2018). Short-term and diurnal temperature changes alter the response of harmful algal blooms of Pseudo-nitzschia pungens to solar ultraviolet radiation. New Zealand Journal of Marine and Freshwater Research, 52(1), 69–81. https://doi.org/10.1080/00288330.2017.1331454
Pilla, R. M., Williamson, C. E., Adamovich, B. V., Adrian, R., Anneville, O., Chandra, S., Colom-Montero, W., Devlin, S. P., Dix, M. A., Dokulil, M. T., Gaiser, E. E., Girdner, S. F., Hambright, K. D., Hamilton, D. P., Havens, K., Hessen, D. O., Higgins, S. N., Huttula, T. H., Huuskonen, H., Isles, P. D. F., et al. (2020). Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Scientific Reports, 10(1), 20514. https://doi.org/10.1038/s41598-020-76873-x
Jiang, X., Zhang, Y., Hutchins, D. A., & Gao, K. (2022). Nitrogen-limitation exacerbates the impact of ultraviolet radiation on the coccolithophore Gephyrocapsa oceanica. Journal of Photochemistry and Photobiology B Biology., 226, 112368. https://doi.org/10.1016/j.jphotobiol.2021.112368
Zhang, Y., Li, K., Zhou, Q., Chen, L., Yang, X., & Zhang, H. (2021). Phytoplankton responses to solar UVR and its combination with nutrient enrichment in a plateau oligotrophic Lake Fuxian: a mesocosm experiment. Environmental Science and Pollution Research, 28(23), 29931–29944. https://doi.org/10.1007/s11356-021-12705-3
Birk, S., Chapman, D., Carvalho, L., Spears, B. M., Andersen, H. E., Argillier, C., Auer, S., Baattrup-Pedersen, A., Banin, L., Beklioğlu, M., Bondar-Kunze, E., Borja, A., Branco, P., Bucak, T., Buijse, A. D., Cardoso, A. C., Couture, R.-M., Cremona, F., de Zwart, D., Feld, C. K., et al. (2020). Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology Evolution, 4(8), 1060–1068. https://doi.org/10.1038/s41559-020-1216-4
Gao, K., Beardall, J., Häder, D. P., Hall-Spencer, J. M., Gao, G., & Hutchins, D. A. (2019). Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation and deoxygenation. Frontiers in Marine Science, 6, 322. https://doi.org/10.3389/fmars.2019.00322
Boyd, P., Collins, S., Dupont, S., Fabricius, K., Gattuso, J.-P., Havenhand, J., Hutchins, D., Riebesell, U., Rintoul, M., Vichi, M., Biswas, H., Gao, K., Gehlen, M., Hurd, C., Kurihara, H., McGraw, C., Navarro, J., Nilsson, G., Passow, U., & Pörtner, H.-O. (2018). Experimental strategies to assess the biological ramifications of multiple drivers of ocean global ocean - a review. Global Change Biology, 24, 2239–2261. https://doi.org/10.1111/gcb.14102
Gao, K., & Häder, D. P. (2020). Photosynthetic performances of marine microalgae under influences of rising CO2 and solar UV radiation. In Q. Wang (Ed.), Microbial photosynthesis (pp. 139–150). Springer.
Byrne, M., & Fitzer, S. (2019). The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. Conservation Physiology., 7(1), coz062. https://doi.org/10.1093/conphys/coz062
Sobrino, C., Neale, P. J., Phillips-Kress, J. D., Moeller, R. E., & Porter, J. (2009). Elevated CO2 increases sensitivity to ultraviolet radiation in lacustrine phytoplankton assemblages. Limnology and Oceanography, 54, 2448–2459. https://doi.org/10.4319/lo.2009.54.6_part_2.2448
Lorenzo, M. R., Neale, P. J., Sobrino, C., León, P., Vázquez, V., Bresnan, E., & Segovia, M. (2019). Effects of elevated CO2 on growth, calcification and spectral dependence of photoinhibition in the coccolithophore Emiliania huxleyi (Prymnesiophyceae). Journal of Phycology., 55(4), 775–778. https://doi.org/10.1111/jpy.12885
Miao, H., Beardall, J., & Gao, K. (2018). Calcification moderates the increased susceptibility to UV radiation of the coccolithophorid Gephryocapsa oceanica grown under elevated CO2 concentration: Evidence based on calcified and non-calcified cells. Photochemistry and Photobiology, 94(5), 994–1002. https://doi.org/10.1111/php.12928
Riebesell, U., Czerny, J., von Bröckel, K., Boxhammer, T., Büdenbender, J., Deckelnick, M., Fischer, M., Hoffmann, D., Krug, S. A., Lentz, U., Ludwig, A., Muche, R., & Schulz, K. G. (2013). Technical Note: a mobile sea-going mesocosm system—new opportunities for ocean change research. Biogeosciences, 10(3), 1835–1847. https://doi.org/10.5194/bg-10-1835-2013
Ma, K., Powers, L. C., Seppälä, J., Norkko, J., & Brandes, J. A. (2022). Effects of added humic substances and nutrients on photochemical degradation of dissolved organic matter in a mesocosm amendment experiment in the gulf of finland Baltic sea. Photochemistry and Photobiology, 98(5), 1025–1042. https://doi.org/10.1111/php.13597
Riebesell, U., Aberle-Malzahn, N., Achterberg, E. P., Algueró-Muñiz, M., Alvarez-Fernandez, S., Arístegui, J., Bach, L. T., Boersma, M., Boxhammer, T., & Guan, W. (2018). Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. Nature Climate Change, 8(12), 1082–1086. https://doi.org/10.1038/s41558-018-0344-1
Duran-Romero, C., Medina-Sanchez, J. M., & Carrillo, P. (2020). Uncoupled phytoplankton-bacterioplankton relationship by multiple drivers interacting at different temporal scales in a high-mountain Mediterranean lake. Scientific Reports, 10(1), 350. https://doi.org/10.1038/s41598-019-57269-y
Boehm, A. B., Silverman, A. I., Schriewer, A., & Goodwin, K. (2019). Systematic review and meta-analysis of decay rates of waterborne mammalian viruses and coliphages in surface waters. Water Research., 164, 114898. https://doi.org/10.1016/j.watres.2019.114898
Nelson, K. L., Boehm, A. B., Davies-Colley, R. J., Dodd, M. C., Kohn, T., Linden, K. G., Liu, Y., Maraccini, P. A., McNeill, K., Mitch, W. A., Nguyen, T. H., Parker, K. M., Rodriguez, R. A., Sassoubre, L. M., Silverman, A. I., Wigginton, K. R., & Zepp, R. G. (2018). Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. Environmental Science: Processes & Impacts, 20(8), 1089–1122. https://doi.org/10.1039/c8em00047f
Zepp, R. G., Cyterski, M., Wong, K., Georgacopoulos, O., Acrey, B., Whelan, G., Parmar, R., & Molina, M. (2018). Biological weighting functions for evaluating the role of sunlight-induced inactivation of coliphages at selected beaches and nearby tributaries. Environmental Science Technology, 52(22), 13068–13076. https://doi.org/10.1021/acs.est.8b02191
Sulzberger, B., Austin, A. T., Cory, R. M., Zepp, R. G., & Paul, N. D. (2019). Solar UV radiation in a changing world: roles of cryosphere–land–water–atmosphere interfaces in global biogeochemical cycles. Photochemical Photobiological Sciences, 18(3), 747–774. https://doi.org/10.1039/C8PP90063A
Silverman, A. I., & Boehm, A. B. (2020). Systematic review and meta-analysis of the persistence and disinfection of human coronaviruses and their viral surrogates in water and wastewater. Environmental Science Technology Letters, 7, 544–553. https://doi.org/10.1021/acs.estlett.0c00313
Silverman, A. I., Tay, N., & Machairas, N. (2019). Comparison of biological weighting functions used to model endogenous sunlight inactivation rates of MS2 coliphage. Water Research, 151, 439–446. https://doi.org/10.1016/j.watres.2018.12.015
Bernhard, G. H., Neale, R. E., Barnes, P. W., Neale, P. J., Zepp, R. G., Wilson, S. R., Andrady, A. L., Bais, A. F., McKenzie, R. L., & Aucamp, P. J. (2020). Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental effects assessment panel, update 2019. Photochemical Photobiological Sciences, 19(5), 542–584. https://doi.org/10.1039/D0PP90011G
Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., & Brouwer, A. (2020). Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environmental Science Technology Letters, 7(7), 511–516. https://doi.org/10.1021/acs.estlett.0c00357
Rimoldi, S. G., Stefani, F., Gigantiello, A., Polesello, S., Comandatore, F., Mileto, D., Maresca, M., Longobardi, C., Mancon, A., Romeri, F., Pagani, C., Cappelli, F., Roscioli, C., Moja, L., Gismondo, M. R., & Salerno, F. (2020). Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Science of the Total Environment., 744, 140911. https://doi.org/10.1016/j.scitotenv.2020.140911
Seyer, A., & Sanlidag, T. (2020). Solar ultraviolet radiation sensitivity of SARS-CoV-2. The Lancet Microbe, 1(1), e8–e9. https://doi.org/10.1016/s2666-5247(20)30013-6
Paul, D., Kolar, P., & Hall, S. G. (2021). A review of the impact of environmental factors on the fate and transport of coronaviruses in aqueous environments. Npj Clean Water., 4(1), 7. https://doi.org/10.1038/s41545-020-00096-w
Biasin, M., Strizzi, S., Bianco, A., Macchi, A., Utyro, O., Pareschi, G., Loffreda, A., Cavalleri, A., Lualdi, M., Trabattoni, D., Tacchetti, C., Mazza, D., & Clerici, M. (2022). UV and violet light can Neutralize SARS-CoV-2 Infectivity. Journal of Photochemistry and Photobiology., 10, 100107. https://doi.org/10.1016/j.jpap.2021.100107
Bernhard, G. H., Madronich, S., Lucas, R. M., Byrne, S., Schikowski, T., & Neale, R. E. (2023). Linkages between COVID-19, solar UV radiation, and the Montreal Protocol. Photochemical Photobiological Sciences., 19(5), 542–584.
Berry, N. L., Overholt, E. P., Fisher, T. J., & Williamson, C. E. (2020). Dissolved organic matter protects mosquito larvae from damaging solar UV radiation. PLoS ONE, 15(10), 0240261. https://doi.org/10.1371/journal.pone.0240261
Wood, C. L., & Johnson, P. T. (2015). A world without parasites: exploring the hidden ecology of infection. Frontiers in Ecology and the Environment, 13(8), 425–434. https://doi.org/10.1890/140368
Overholt, E. P., Duffy, M. A., Meeks, M. P., Leach, T. H., & Williamson, C. E. (2020). Light exposure decreases infectivity of the Daphnia parasite Pasteuria ramosa. Journal of Plankton Research, 42(1), 41–44. https://doi.org/10.1093/plankt/fbz070
Rogalski, M. A., & Duffy, M. A. (2020). Local adaptation of a parasite to solar radiation impacts disease transmission potential, spore yield, and host fecundity. Evolution, 74, 1856–1864. https://doi.org/10.1111/evo.13940
Shaw, C. L., Hall, S. R., Overholt, E. P., Cáceres, C. E., Williamson, C. E., & Duffy, M. A. (2020). Shedding light on environmentally transmitted parasites: lighter conditions within lakes restrict epidemic size. Ecology, 101(11), e03168. https://doi.org/10.1002/ecy.3168
Henard, C., Saraiva, M. R., Ściślak, M. E., Ruba, T., McLaggan, D., Noguera, P., & van West, P. (2022). Can ulcerative dermal necrosis (UDN) in Atlantic salmon be attributed to ultraviolet radiation and secondary Saprolegnia parasitica infections? Fungal Biology Reviews, 40, 70–75. https://doi.org/10.1016/j.fbr.2022.02.002
Villafañe, V., Sundbäck, K., Figueroa, F., & Helbling, E. (2003). Photosynthesis in the aquatic environment as affected by UVR. In E. W. Helbling & H. E. Zagarese (Eds.), UV effects in aquatic organisms and ecosystems (pp. 357–397). Royal Society of Chemistry.
García-Corral, L. S., Duarte, C. M., & Agusti, S. (2020). Impact of UV radiation on plankton net community production: responses in Western Australian estuarine and coastal waters. Marine Ecology Progress Series, 651, 45–56. https://doi.org/10.3354/meps13456
Regaudie-de-Gioux, A., Agustí, S., & Duarte, C. M. (2014). UV sensitivity of planktonic net community production in ocean surface waters. Journal of Geophysical Research: Biogeosciences, 119(5), 929–936. https://doi.org/10.1002/2013jg002566
Ossola, R. (2021). Advancing the Photochemistry of Dissolved Organic Matter: quantification of singlet oxygen and formation mechanism of selected photoproducts. PhD Dissertation, ETH Zurich. https://doi.org/10.3929/ethz-b-000482128
Barnes, P. W., Robson, T. M., Zepp, R. G., Bornman, J. F., Jansen, M. A. K., Ossola, R., Wang, Q.-W., Robinson, S. A., Foereid, B., Klekociuk, A. R., Martinez-Abaigar, J., Hou, W.-C., Mackenzie, R. L., & Paul, N. D. (2023). Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochemical & Photobiological Sciences., 21(3), 275–301.
Madronich, S., Sulzberger, B., Longstreth, J. D., Schikowski, T., Andersen, M. P. S., Solomon, K. R., & Wilson, S. R. (2023). Changes in tropospheric air quality related to the protection of stratospheric ozone and a changing climate. Photochemical & Photobiological Sciences., 19(5), 542–584.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C. L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O’Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., & Kuhry, P. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23), 6573–6593. https://doi.org/10.5194/bg-11-6573-2014
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C., Turetsky, M., Voigt, C., & Yu, Z. (2020). Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proceedings of the National Academy of Sciences, 117(34), 20438–20446. https://doi.org/10.1073/pnas.1916387117
Gagné, K. R., Ewers, S. C., Murphy, C. J., Daanen, R., Walter Anthony, K., & Guerard, J. J. (2020). Composition and photo-reactivity of organic matter from permafrost soils and surface waters in interior Alaska. Environmental Science: Processes & Impacts, 22(7), 1525–1539. https://doi.org/10.1039/d0em00097c
Allesson, L., Koehler, B., Thrane, J.-E., Andersen, T., & Hessen, D. O. (2021). The role of photomineralization for CO2 emissions in boreal lakes along a gradient of dissolved organic matter. Limnology and Oceanography, 66(1), 158–170. https://doi.org/10.1002/lno.11594
Koehler, B., Landelius, T., Weyhenmeyer, G. A., Machida, N., & Tranvik, L. J. (2014). Sunlight-induced carbon dioxide emissions from inland waters. Global Biogeochemical Cycles, 28(7), 2014GB004850. https://doi.org/10.1002/2014GB004850
Maavara, T., Logozzo, L., Stubbins, A., Aho, K., Brinkerhoff, C., Hosen, J., & Raymond, P. (2021). Does photomineralization of dissolved organics matter in temperate rivers? Journal of Geophysical Research Biogeosciences., 126(7), e2021JG006402. https://doi.org/10.1029/2021JG006402
Clark, J. B., Long, W., & Hood, R. R. (2020). A comprehensive estuarine dissolved organic carbon budget using an enhanced biogeochemical model. Journal of Geophysical Research: Biogeosciences., 125(5), e2019JG005442. https://doi.org/10.1029/2019JG005442
Stubbins, A., Law, C. S., Uher, G., & Upstill-Goddard, R. C. (2011). Carbon monoxide apparent quantum yields and photoproduction in the Tyne estuary. Biogeosciences, 8(3), 703–713. https://doi.org/10.5194/bg-8-703-2011
Zimov, S. A., Schuur, E. A. G., & Chapin, F. S. (2006). Permafrost and the global carbon budget. Science, 312(5780), 1612–1613. https://doi.org/10.1126/science.1128908
Grunert, B. K., Tzortziou, M., Neale, P., Menendez, A., & Hernes, P. (2021). DOM degradation by light and microbes along the Yukon River-coastal ocean continuum. Scientific Reports, 11(1), 10236. https://doi.org/10.1038/s41598-021-89327-9
Rocher-Ros, G., Harms, T. K., Sponseller, R. A., Väisänen, M., Mörth, C.-M., & Giesler, R. (2021). Metabolism overrides photo-oxidation in CO2 dynamics of Arctic permafrost streams. Limnology and Oceanography, 66(S1), 11564. https://doi.org/10.1002/lno.11564
Stubbins, A., Mann, P. J., Powers, L., Bittar, T. B., Dittmar, T., McIntyre, C. P., Eglinton, T. I., Zimov, N., & Spencer, R. G. M. (2017). Low photolability of yedoma permafrost dissolved organic carbon. Journal of Geophysical Research: Biogeosciences, 122(1), 200–211. https://doi.org/10.1002/2016JG003688
Bowen, J. C., Ward, C. P., Kling, G. W., & Cory, R. M. (2020). Arctic amplification of global warming strengthened by sunlight oxidation of permafrost carbon to CO2. Geophysical Research Letters, 47(12), e2020GL087085. https://doi.org/10.1029/2020GL087085
Cory, R. M., Ward, C. P., Crump, B. C., & Kling, G. W. (2014). Sunlight controls water column processing of carbon in arctic fresh waters. Science, 345(6199), 925–928. https://doi.org/10.1126/science.1253119
Mazoyer, F., Laurion, I., & Rautio, M. (2022). The dominant role of sunlight in degrading winter dissolved organic matter from a thermokarst lake in a subarctic peatland. Biogeosciences. 19(17), 3959–3977. https://doi.org/10.5194/bg-19-3959-2022
Koehler, B., Powers, L. C., Cory, R. M., Einarsdóttir, K., Gu, Y., Tranvik, L. J., Vähätalo, A. V., Ward, C. P., & Miller, W. L. (2022). Inter-laboratory differences in the apparent quantum yield for the photochemical production of dissolved inorganic carbon in inland waters and implications for photochemical rate modeling. Limnology and Oceanography: Methods, 20(6), 320–337. https://doi.org/10.1002/lom3.10489
Zheng, B., Chevallier, F., Yin, Y., Ciais, P., Fortems-Cheiney, A., Deeter, M. N., Parker, R. J., Wang, Y., Worden, H. M., & Zhao, Y. (2019). Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions. Earth System Science Data, 11(3), 1411–1436. https://doi.org/10.5194/essd-11-1411-2019
Conte, L., Szopa, S., Séférian, R., & Bopp, L. (2019). The oceanic cycle of carbon monoxide and its emissions to the atmosphere. Biogeosciences, 16(4), 881–902. https://doi.org/10.5194/bg-16-881-2019
Mopper, K., Kieber, D. J., & Stubbins, A. (2015). Marine photochemistry of organic matter: processes and impacts. In C. A. Carlson (Ed.), Biogeochemistry of Marine Dissolved Organic Matter (2nd ed., pp. 389–450). USA: Academic Press
Reader, H. E., & Miller, W. L. (2012). Variability of carbon monoxide and carbon dioxide apparent quantum yield spectra in three coastal estuaries of the South Atlantic Bight. Biogeosciences, 9(11), 4279–4294. https://doi.org/10.5194/bg-9-4279-2012
Campen, H. I., Arévalo-Martínez, D. L., Artioli, Y., Brown, I. J., Kitidis, V., Lessin, G., Rees, A. P., & Bange, H. W. (2022). The role of a changing Arctic Ocean and climate for the biogeochemical cycling of dimethyl sulphide and carbon monoxide. Ambio, 51(2), 411–422. https://doi.org/10.1007/s13280-021-01612-z
Song, G., & Xie, H. (2017). Spectral efficiencies of carbon monoxide photoproduction from particulate and dissolved organic matter in laboratory cultures of Arctic sea ice algae. Marine Chemistry, 190, 51–65. https://doi.org/10.1016/j.marchem.2017.02.002
Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., Castaldi, S., et al. (2020). The global methane budget 2000–2017. Earth System Science Data, 12(3), 1561–1623. https://doi.org/10.5194/essd-12-1561-2020
Li, Y., Fichot, C. G., Geng, L., Scarratt, M. G., & Xie, H. (2020). The contribution of methane photoproduction to the oceanic methane paradox. Geophysical Research Letters., 47(14), e2020GL088362. https://doi.org/10.1029/2020GL088362
Whelan, M. E., Lennartz, S. T., Gimeno, T. E., Wehr, R., Wohlfahrt, G., Wang, Y., Kooijmans, L. M. J., Hilton, T. W., Belviso, S., Peylin, P., Commane, R., Sun, W., Chen, H., Kuai, L., Mammarella, I., Maseyk, K., Berkelhammer, M., Li, K.-F., Yakir, D., Zumkehr, A., et al. (2018). Reviews and syntheses: carbonyl sulfide as a multi-scale tracer for carbon and water cycles. Biogeosciences, 15(12), 3625–3657. https://doi.org/10.5194/bg-15-3625-2018
Launois, T., Belviso, S., Bopp, L., Fichot, C. G., & Peylin, P. (2015). A new model for the global biogeochemical cycle of carbonyl sulphide—Part 1: assessment of direct marine emissions with an oceanic general circulation and biogeochemistry model. Atmospheric Chemistry and Physics, 15(5), 2295–2312. https://doi.org/10.5194/acp-15-2295-2015
Lennartz, S. T., Marandino, C. A., von Hobe, M., Cortes, P., Quack, B., Simo, R., Booge, D., Pozzer, A., Steinhoff, T., Arevalo-Martinez, D. L., Kloss, C., Bracher, A., Röttgers, R., Atlas, E., & Krüger, K. (2017). Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide. Atmospheric Chemistry and Physics, 17(1), 385–402. https://doi.org/10.5194/acp-17-385-2017
Lennartz, S. T., von Hobe, M., Booge, D., Bittig, H. C., Fischer, T., Gonçalves-Araujo, R., Ksionzek, K. B., Koch, B. P., Bracher, A., Röttgers, R., Quack, B., & Marandino, C. A. (2019). The influence of dissolved organic matter on the marine production of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the Peruvian upwelling. Ocean Science, 15(4), 1071–1090. https://doi.org/10.5194/os-15-1071-2019
Cory, R. M., & Kling, G. W. (2018). Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnology and Oceanography Letters, 3(3), 102–116. https://doi.org/10.1002/lol2.10060
Ward, C. P., Nalven, S. G., Crump, B. C., Kling, G. W., & Cory, R. M. (2017). Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nature Communications, 8(1), 772. https://doi.org/10.1038/s41467-017-00759-2
Nalven, S. G., Ward, C. P., Payet, J. P., Cory, R. M., Kling, G. W., Sharpton, T. J., Sullivan, C. M., & Crump, B. C. (2020). Experimental metatranscriptomics reveals the costs and benefits of dissolved organic matter photo-alteration for freshwater microbes. Environmental Microbiology, 22(8), 3505–3521. https://doi.org/10.1111/1462-2920.15121
Ward, C. P., & Cory, R. M. (2020). Assessing the prevalence, products, and pathways of dissolved organic matter partial photo-oxidation in arctic surface waters. Environmental Science: Processes Impacts, 22, 1214–1223. https://doi.org/10.1039/C9EM00504H
Cory, R. M., McNeill, K., Cotner, J. B., Amado, A., Purcell, J. M., & Marshall, A. G. (2010). Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter. Environmental Science Technology, 44(10), 3683–3689. https://doi.org/10.1021/es902989y
Clark, J. B., Neale, P., Tzortziou, M., Cao, F., & Hood, R. R. (2019). A mechanistic model of photochemical transformation and degradation of colored dissolved organic matter. Marine Chemistry., 214, 103666. https://doi.org/10.1016/j.marchem.2019.103666
Ossola, R., Tolu, J., Clerc, B., Erickson, P. R., Winkel, L. H. E., & McNeill, K. (2019). Photochemical production of sulfate and methanesulfonic acid from dissolved organic sulfur. Environmental Science Technology, 53(22), 13191–13200. https://doi.org/10.1021/acs.est.9b04721
Doane, T. A. (2017). The abiotic nitrogen cycle. ACS Earth and Space Chemistry, 1(7), 411–421. https://doi.org/10.1021/acsearthspacechem.7b00059
von Friesen, L. W., & Riemann, L. (2020). Nitrogen fixation in a changing Arctic ocean: an overlooked source of nitrogen? Frontiers in Microbiology., 11, 596426. https://doi.org/10.3389/fmicb.2020.596426
Bowen, J. (2021). Impact of dissolved organic matter photodegradation on carbon and nitrogen cycling in freshwaters. Thesis, University of Michigan. https://doi.org/10.7302/3033
Vähätalo, A. V., Salonen, K. M., & Wetzel, R. G. (2003). Photochemical transformation of allochthonous organic matter provides bioavailable nutrients in a humic lake. Archiv für Hydrobiologie 156(3), 287–324. https://doi.org/10.1127/0003-9136/2003/0156-0287
Yang, Y., Sun, P., Padhye, L. P., & Zhang, R. (2020). Photo-ammonification in surface water samples: mechanism and influencing factors. Science of the Total Environment., 759, 143547. https://doi.org/10.1016/j.scitotenv.2020.143547
Guo, M., Li, X., Song, C., Liu, G., & Zhou, Y. (2020). Photo-induced phosphate release during sediment resuspension in shallow lakes: a potential positive feedback mechanism of eutrophication. Environmental Pollution., 258, 113679. https://doi.org/10.1016/j.envpol.2019.113679
Li, X., Zhou, Y., Liu, G., Lei, H., & Zhu, D. (2017). Mechanisms of the photochemical release of phosphate from resuspended sediments under solar irradiation. Science of the Total Environment., 595, 779–786. https://doi.org/10.1016/j.scitotenv.2017.04.039
Cheng, F., Zhang, T., Liu, Y., Zhang, Y., & Qu, J. (2021). Non-negligible effects of UV irradiation on transformation and environmental risks of microplastics in the water environment. Journal of Xenobiotics, 12(1), 1–12. https://doi.org/10.3390/jox12010001
Jansen, M. A. K., Barnes, P. W., Bornman, J. F., Rose, K. C., Madronich, S., White, C. C., Zepp, R. G., & Andrady, A. L. (2023). The montreal protocol and the fate of environmental plastic debris. Photochemical Photobiological Sciences., 19(5), 542–584.
Wilson, B. D., Moon, S., & Armstrong, F. (2012). Comprehensive review of ultraviolet radiation and the current status on sunscreens. The Journal of Clinical and Aesthetic Dermatology, 5(9), 18–23.
Downs, C. A., Cruz, O. T., & Remengesau, T. E. (2022). Sunscreen pollution and tourism governance: Science and innovation are necessary for biodiversity conservation and sustainable tourism. Aquatic Conservation Marine and Freshwater Ecosystems, 32(5), 896–906. https://doi.org/10.1002/aqc.3791
Schneider, S. L., & Lim, H. W. (2019). Review of environmental effects of oxybenzone and other sunscreen active ingredients. Journal of the American Academy of Dermatology, 80(1), 266–271. https://doi.org/10.1016/j.jaad.2018.06.033
Tovar-Sanchez, A., Sanchez-Quiles, D., & Rodriguez-Romero, A. (2019). Massive coastal tourism influx to the Mediterranean Sea: the environmental risk of sunscreens. Science of the Total Environment, 656, 316–321. https://doi.org/10.1016/j.scitotenv.2018.11.399
National Academies of Sciences, Engineering, and Medicine (2022) Review of Fate, Exposure, and Effects of Sunscreens in Aquatic Environments and Implications for Sunscreen Usage and Human Health. The National Academies Press, Washington, DC. https://doi.org/10.17226/26381
Mitchelmore, C. L., He, K., Gonsior, M., Hain, E., Heyes, A., Clark, C., Younger, R., Schmitt-Kopplin, P., Feerick, A., Conway, A., & Blaney, L. (2019). Occurrence and distribution of UV-filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii. Science of the Total Environment, 670, 398–410. https://doi.org/10.1016/j.scitotenv.2019.03.034
de Miranda, L. L. R., Harvey, K. E., Ahmed, A., & Harvey, S. C. (2021). UV-filter pollution: current concerns and future prospects. Environmental Monitoring and Assessment, 193(12), 840. https://doi.org/10.1007/s10661-021-09626-6
Lozano, C., Matallana-Surget, S., Givens, J., Nouet, S., Arbuckle, L., Lambert, Z., & Lebaron, P. (2020). Toxicity of UV filters on marine bacteria: combined effects with damaging solar radiation. Science of the Total Environment., 722, 137803. https://doi.org/10.1016/j.scitotenv.2020.137803
Vuckovic, D., Tinoco, A. I., Ling, L., Renicke, C., Pringle, J. R., & Mitch, W. A. (2022). Conversion of oxybenzone sunscreen to phototoxic glucoside conjugates by sea anemones and corals. Science, 376(6593), 644–648. https://doi.org/10.1126/science.abn2600
Yuan, S., Huang, J., Jiang, X., Huang, Y., Zhu, X., & Cai, Z. (2022). Environmental fate and toxicity of sunscreen-derived Inorganic ultraviolet filters in aquatic environments: a review. Nanomaterials, 12(4), 699. https://doi.org/10.3390/nano12040699
He, K., Hain, E., Timm, A., Tarnowski, M., & Blaney, L. (2019). Occurrence of antibiotics, estrogenic hormones, and UV-filters in water, sediment, and oyster tissue from the Chesapeake Bay. Science of the Total Environment, 650(Pt 2), 3101–3109. https://doi.org/10.1016/j.scitotenv.2018.10.021
Du, Y., Wang, W. Q., Pei, Z. T., Ahmad, F., Xu, R. R., Zhang, Y. M., & Sun, L. W. (2017). Acute toxicity and ecological risk assessment of benzophenone-3 (BP-3) and benzophenone-4 (BP-4) in ultraviolet (UV)-filters. International Journal of Environmental Research and Public Health, 14(11), 1414. https://doi.org/10.3390/ijerph14111414
Downs, C. A., Bishop, E., Diaz-Cruz, M. S., Haghshenas, S. A., Stien, D., Rodrigues, A. M. S., Woodley, C. M., Sunyer-Caldú, A., Doust, S. N., Espero, W., Ward, G., Farhangmehr, A., Tabatabaee Samimi, S. M., Risk, M. J., Lebaron, P., & DiNardo, J. C. (2022). Oxybenzone contamination from sunscreen pollution and its ecological threat to Hanauma Bay, Oahu, Hawaii, USA. Chemosphere, 291, 132880. https://doi.org/10.1016/j.chemosphere.2021.132880
Moeller, M., Pawlowski, S., Petersen-Thiery, M., Miller, I. B., Nietzer, S., Heisel-Sure, Y., Kellermann, M. Y., & Schupp, P. J. (2021). Challenges in current coral reef protection—Possible impacts of UV filters used in sunscreens, a critical review. Frontiers in Marine Science., 8, 665548. https://doi.org/10.3389/fmars.2021.665548
Araújo, C. V. M., Rodríguez-Romero, A., Fernández, M., Sparaventi, E., Medina, M. M., & Tovar-Sánchez, A. (2020). Repellency and mortality effects of sunscreens on the shrimp Palaemon varians: toxicity dependent on exposure method. Chemosphere, 257, 127190. https://doi.org/10.1016/j.chemosphere.2020.127190
He, T., Tsui, M. M. P., Tan, C. J., Ma, C. Y., Yiu, S. K. F., Wang, L. H., Chen, T. H., Fan, T. Y., Lam, P. K. S., & Murphy, M. B. (2019). Toxicological effects of two organic ultraviolet filters and a related commercial sunscreen product in adult corals. Environmental Pollution, 245, 462–471. https://doi.org/10.1016/j.envpol.2018.11.029
He, T., Tsui, M. M. P., Tan, C. J., Ng, K. Y., Guo, F. W., Wang, L. H., Chen, T. H., Fan, T. Y., Lam, P. K. S., & Murphy, M. B. (2019). Comparative toxicities of four benzophenone ultraviolet filters to two life stages of two coral species. Science of the Total Environment, 651, 2391–2399. https://doi.org/10.1016/j.scitotenv.2018.10.148
Fitt, W. K., & Hofmann, D. K. (2020). The effects of the UV-blocker oxybenzone (benzophenone-3) on planulae swimming and metamorphosis of the Scyphozoans Cassiopea xamachana and Cassiopea frondosa. Oceans, 1(4), 174–180. https://doi.org/10.3390/oceans1040013
Cocci, P., Mosconi, G., & Palermo, F. A. (2020). Sunscreen active ingredients in loggerhead turtles (Caretta caretta) and their relation to molecular markers of inflammation, oxidative stress and hormonal activity in wild populations. Marine Pollution Bulletin., 153, 111012. https://doi.org/10.1016/j.marpolbul.2020.111012
Raffa, R. B., Pergolizzi, J. V., Taylor, R., & Kitzen, J. M. (2019). Sunscreen bans: coral reefs and skin cancer. Journal of Clinical Pharmacy and Therapeutics, 44(1), 134–139. https://doi.org/10.1111/jcpt.12778
Catalano, R., Labille, J., Gaglio, D., Alijagic, A., Napodano, E., Slomberg, D., Campos, A., & Pinsino, A. (2020). Safety evaluation of TiO2 nanoparticle-based sunscreen UV Filters on the development and the immunological state of the sea urchin Paracentrotus lividus. Nanomaterials, 10(11), 2102. https://doi.org/10.3390/nano10112102
Corinaldesi, C., Marcellini, F., Nepote, E., Damiani, E., & Danovaro, R. (2018). Impact of inorganic UV filters contained in sunscreen products on tropical stony corals (Acropora spp.). Science of the Total Environment, 637–638, 1279–1285. https://doi.org/10.1016/j.scitotenv.2018.05.108
Fel, J.-P., Lacherez, C., Bensetra, A., Mezzache, S., Béraud, E., Léonard, M., Allemand, D., & Ferrier-Pagès, C. (2018). Photochemical response of the scleractinian coral Stylophora pistillata to some sunscreen ingredients. Coral Reefs, 38(1), 109–122. https://doi.org/10.1007/s00338-018-01759-4
Cunningham, B., Torres-Duarte, C., Cherr, G., & Adams, N. (2020). Effects of three zinc-containing sunscreens on development of purple sea urchin (Strongylocentrotus purpuratus) embryos. Aquatic Toxicology., 218, 105355. https://doi.org/10.1016/j.aquatox.2019.105355
Hanigan, D., Truong, L., Schoepf, J., Nosaka, T., Mulchandani, A., Tanguay, R. L., & Westerhoff, P. (2018). Trade-offs in ecosystem impacts from nanomaterial versus organic chemical ultraviolet filters in sunscreens. Water Research, 139, 281–290. https://doi.org/10.1016/j.watres.2018.03.062
Fastelli, P., & Renzi, M. (2019). Exposure of key marine species to sunscreens: Changing ecotoxicity as a possible indirect effect of global warming. Marine Pollution Bulletin., 149, 110517. https://doi.org/10.1016/j.marpolbul.2019.110517
Chaves Lopes, F., Rosa de Castro, M., Caldas Barbosa, S., Primel, E. G., & de Martinez Gaspar Martins, C. (2020). Effect of the UV filter, Benzophenone-3, on biomarkers of the yellow clam (Amarilladesma mactroides) under different pH conditions. Marine Pollution Bulletin., 158, 111401. https://doi.org/10.1016/j.marpolbul.2020.111401
Wijgerde, T., van Ballegooijen, M., Nijland, R., van der Loos, L., Kwadijk, C., Osinga, R., Murk, A., & Slijkerman, D. (2020). Adding insult to injury: effects of chronic oxybenzone exposure and elevated temperature on two reef-building corals. Science of the Total Environment., 733, 139030. https://doi.org/10.1016/j.scitotenv.2020.139030
Rosic, N. N. (2019). Mycosporine-like amino acids: Making the foundation for organic personalised sunscreens. Marine drugs, 17(11), 638. https://doi.org/10.3390/md17110638
Sen, S., & Mallick, N. (2021). Mycosporine-like amino acids: algal metabolites shaping the safety and sustainability profiles of commercial sunscreens. Algal Research., 58, 102425. https://doi.org/10.1016/j.algal.2021.102425
Singh, A., Čížková, M., Bišová, K., & Vítová, M. (2021). Exploring mycosporine-like amino acids (MAAs) as safe and natural protective agents against UV-induced skin damage. Antioxidants, 10(5), 683. https://doi.org/10.3390/antiox10050683
Rangel, K. C. (2020). Assessment of the photoprotective potential and toxicity of Antarctic red macroalgae extracts from Curdiea racovitzae and Iridaea cordata for cosmetic use. Algal Research., 50, 101984. https://doi.org/10.1016/j.algal.2020.101984
Woolley, J. M., Staniforth, M., Horbury, M. D., Richings, G. W., Wills, M., & Stavros, V. G. (2018). Unravelling the photoprotection properties of mycosporine amino acid motifs. The Journal of Physical Chemistry Letters, 9(11), 3043–3048. https://doi.org/10.1021/acs.jpclett.8b00921
Geraldes, V., & Pinto, E. (2021). Mycosporine-like amino acids (MAAs): Biology, chemistry and identification features. Pharmaceuticals, 14(1), 63. https://doi.org/10.3390/ph14010063
Bhatia, S., Sardana, S., Sharma, A., Vargas De La Cruz, C. B., Chaugule, B., & Khodaie, L. (2019). Development of broad spectrum mycosporine loaded sunscreen formulation from Ulva fasciata delile. Biomedicine, 9(3), 17. https://doi.org/10.1051/bmdcn/2019090317
Lawrence, K. P., Long, P. F., & Young, A. R. (2019). Mycosporine-like amino acids for skin photoprotection. Current Medicinal Chemistry, 25(40), 5512–5527. https://doi.org/10.2174/0929867324666170529124237
Prasedya, E. S., Syafitri, S. M., Geraldine, B. A., Hamdin, C. D., Frediansyah, A., Miyake, M., Kobayashi, D., Hazama, A., & Sunarpi, H. (2019). UVA photoprotective activity of Brown macroalgae Sargassum cristafolium. Biomedicines, 7(4), 77. https://doi.org/10.3390/biomedicines7040077
Yang, G., Cozad, M. A., Holland, D. A., Zhang, Y., Luesch, H., & Ding, Y. (2018). Photosynthetic production of sunscreen shinorine using an engineered cyanobacterium. ACS Synthetic Biology, 7(2), 664–671. https://doi.org/10.1021/acssynbio.7b00397
Bhatia, S., Al-Harrasi, A., Behl, T., Anwer, M. K., Ahmed, M. M., Mittal, V., Kaushik, D., Chigurupati, S., Kabir, M. T., Sharma, P. B., Chaugule, B., & Vargas-de-la-Cruz, C. (2021). Unravelling the photoprotective effects of freshwater alga Nostoc commune Vaucher ex Bornet et Flahault against ultraviolet radiations. Environmental Science and Pollution Research, 29(10), 14380–14392. https://doi.org/10.1007/s11356-021-16704-2
Amador-Castro, F., Rodriguez-Martinez, V., & Carrillo-Nieves, D. (2020). Robust natural ultraviolet filters from marine ecosystems for the formulation of environmental friendlier bio-sunscreens. Science of the Total Environment., 749, 141576. https://doi.org/10.1016/j.scitotenv.2020.141576
Sánchez-Suárez, J., Villamil, L., Coy-Barrera, E., & Díaz, L. (2021). Cliona varians-derived actinomycetes as bioresources of photoprotection-related Bioactive end-products. Marine Drugs, 19(12), 674. https://doi.org/10.3390/md19120674
Brunt, E. G., & Burgess, J. G. (2018). The promise of marine molecules as cosmetic active ingredients. International Journal of Cosmetic Science, 40(1), 1–15. https://doi.org/10.1111/ics.12435
Vega, J., Bonomi-Barufi, J., Gómez-Pinchetti, J. L., & Figueroa, F. L. (2020). Cyanobacteria and red macroalgae as potential sources of antioxidants and UV radiation-absorbing compounds for cosmeceutical applications. Marine Drugs, 18(12), 659. https://doi.org/10.3390/md18120659
Andrady, A. L., Heikkilä, A. M., Pandey, K. K., Bruckman, L. S., White, C. C., Zhu, M., & Zhu, L. (2023) Effects of UV radiation on natural and synthetic materials. Photochemical & Photobiological Sciences. https://doi.org/10.1007/s43630-023-00377-6
Ward, C. P., & Overton, E. B. (2020). How the 2010 Deepwater Horizon spill reshaped our understanding of crude oil photochemical weathering at sea: a past, present, and future perspective. Environmental Science: Processes Impacts, 22(5), 1125–1138. https://doi.org/10.1039/d0em00027b
Freeman, D. H., & Ward, C. P. (2022). Sunlight-driven dissolution is a major fate of oil at sea. Science Advances., 8(7), abl7605. https://doi.org/10.1126/sciadv.abl7605
Zito, P., Podgorski, D. C., Bartges, T., Guillemette, F., Roebuck, J. A., Spencer, R. G. M., Rodgers, R. P., & Tarr, M. A. (2020). Sunlight-induced molecular progression of oil into oxidized oil soluble species, interfacial material, and dissolved organic matter. Energy & Fuels, 34(4), 4721–4726. https://doi.org/10.1021/acs.energyfuels.9b04408
Nordborg, F. M., Jones, R. J., Oelgemoller, M., & Negri, A. P. (2020). The effects of ultraviolet radiation and climate on oil toxicity to coral reef organisms—A review. Science of the Total Environment., 720, 137486. https://doi.org/10.1016/j.scitotenv.2020.137486
Nordborg, F. M., Brinkman, D. L., Ricardo, G. F., Agustí, S., & Negri, A. P. (2021). Comparative sensitivity of the early life stages of a coral to heavy fuel oil and UV radiation. Science of the Total Environment., 781, 146676. https://doi.org/10.1016/j.scitotenv.2021.146676
Nielsen, K. M., Alloy, M. M., Damare, L., Palmer, I., Forth, H. P., Morris, J., Stoeckel, J. A., & Roberts, A. P. (2020). Planktonic fiddler crab (Uca longisignalis) are susceptible to photoinduced toxicity following in ovo exposure in oiled mesocosms. Environmental Science Technology, 54(10), 6254–6261. https://doi.org/10.1021/acs.est.0c00215
Knightes, C. D., Ambrose, R. B., Jr., Avant, B., Han, Y., Acrey, B., Bouchard, D. C., Zepp, R., & Wool, T. (2019). Modeling framework for simulating concentrations of solute chemicals, nanoparticles, and solids in surface waters and sediments: WASP8 Advanced Toxicant Module. Environmental Modelling Software, 111, 444–458. https://doi.org/10.1016/j.envsoft.2018.10.012
Vione, D., & Scozzaro, A. (2019). Photochemistry of surface fresh waters in the framework of climate change. Environmental Science Technology, 53(14), 7945–7963. https://doi.org/10.1021/acs.est.9b00968
Han, Y., Knightes, C. D., Bouchard, D., Zepp, R., Avant, B., Hsieh, H.-S., Chang, X., Acrey, B., Henderson, W. M., & Spear, J. (2019). Simulating graphene oxide nanomaterial phototransformation and transport in surface water. Environmental Science: Nano, 6(1), 180–194. https://doi.org/10.1039/C8EN01088A
Beecraft, L., Watson, S. B., & Smith, R. E. H. (2019). Innate resistance of PSII efficiency to sunlight stress is not an advantage for cyanobacteria compared to eukaryotic phytoplankton. Aquatic Ecology, 53(3), 347–364. https://doi.org/10.1007/s10452-019-09694-4
Paerl, H. W., Otten, T. G., & Kudela, R. (2018). Mitigating the expansion of harmful algal blooms across the freshwater-to-marine continuum. Environmental Science Technology, 52(10), 5519–5529. https://doi.org/10.1021/acs.est.7b05950
Wang, X., Feng, X., Zhuang, Y., Lu, J., Wang, Y., Gonçalves, R. J., Li, X., Lou, Y., & Guan, W. (2019). Effects of ocean acidification and solar ultraviolet radiation on physiology and toxicity of dinoflagellate Karenia mikimotoi. Harmful Algae, 81, 1–9. https://doi.org/10.1016/j.hal.2018.11.013
Ren, L., Wang, P., Wang, C., Paerl, H. W., & Wang, H. (2020). Effects of phosphorus availability and phosphorus utilization behavior of Microcystis aeruginosa on its adaptation capability to ultraviolet radiation. Environmental Pollution., 256, 113441. https://doi.org/10.1016/j.envpol.2019.113441
Xu, Z., Gao, G., Tu, B., Qiao, H., Ge, H., & Wu, H. (2019). Physiological response of the toxic and non-toxic strains of a bloom-forming cyanobacterium Microcystis aeruginosa to changing ultraviolet radiation regimes. Hydrobiologia, 833(1), 143–156. https://doi.org/10.1007/s10750-019-3896-9
Jokiel, P. L. (1980). Solar ultraviolet radiation and coral reef epifauna. Science, 207(4435), 1069–1071. https://doi.org/10.1126/science.207.4435.1069
Figueroa, F. L. (2021). Mycosporine-like amino acids from marine resource. Marine Drugs, 19(1), 18. https://doi.org/10.3390/md19010018
Llewellyn, C. A., & Airs, R. L. (2010). Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Marine Drugs, 8(4), 1273–1291. https://doi.org/10.3390/md8041273
Bandaranayake, W. M. (1998). Mycosporines: are they nature’s sunscreens? Natural Product Reports, 15(2), 159–172. https://doi.org/10.1039/A815159Y
Banaszak, A. T., & Lesser, M. P. (2009). Effects of solar ultraviolet radiation on coral reef organisms. Photochemical Photobiological Sciences, 8(9), 1276–1294. https://doi.org/10.1039/b902763g
Bentley, R. (1990). The shikimate pathway–a metabolic tree with many branches. Critical Reviews in Biochemistry and Molecular Biology, 25(5), 307–384. https://doi.org/10.3109/10409239009090615
Lalegerie, F., Stiger-Pouvreau, V., & Connan, S. (2020). Temporal variation in pigment and mycosporine-like amino acid composition of the red macroalga Palmaria palmata from Brittany (France): Hypothesis on the MAA biosynthesis pathway under high irradiance. Journal of Applied Phycology, 32(4), 2641–2656. https://doi.org/10.1007/s10811-020-02075-7
Nishida, Y., Kumagai, Y., Michiba, S., Yasui, H., & Kishimura, H. (2020). Efficient extraction and antioxidant capacity of mycosporine-like amino acids from red alga dulse Palmaria palmata in Japan. Marine Drugs, 18(10), 502. https://doi.org/10.3390/md18100502
Orfanoudaki, M., Hartmann, A., Karsten, U., Ganzera, M., & Müller, K. (2019). Chemical profiling of mycosporine-like amino acids in twenty-three red algal species. Journal of Phycology, 55(2), 393–403. https://doi.org/10.1111/jpy.12827
Sun, Y., Zhang, N., Zhou, J., Dong, S., Zhang, X., Guo, L., & Guo, G. (2020). Distribution, contents, and types of mycosporine-like amino acids (MAAs) in marine macroalgae and a database for MAAs based on these characteristics. Marine Drugs, 18(1), 43. https://doi.org/10.3390/md18010043
Hylander, S. (2020). Mycosporine-like amino acids (MAAs) in zooplankton. Marine Drugs, 18(2), 72. https://doi.org/10.3390/md18020072
Kokabi, M., Yousefzadi, M., Nejad Ebrahimi, S., & Zarei, M. (2020). Extraction and characterization of UV-absorbing compounds from sea urchin Echinometra mathaei. Aquatics Physiology and Biotechnology, 8(8), 99–115.
Pathak, J., Ahmed, H., Singh, P. R., Singh, S. P., Häder, D.-P., & Sinha, R. P. (2019). Mechanisms of photoprotection in cyanobacteria. In A. K. Mishra, D. N. Tiwari, & A. N. Rai (Eds.), cyanobacteria (pp. 145–171). Elsevier.
Xu, J., Zhang, X., Fu, Q., Gao, G., & Gao, K. (2018). Water depth-dependant photosynthetic and growth rates of Gracilaria lemaneiformis, with special reference to effects of solar UV radiation. Aquaculture, 484, 28–31. https://doi.org/10.1016/j.aquaculture.2017.10.035
Gómez, I., Navarro, N. P., & Huovinen, P. (2019). Bio-optical and physiological patterns in Antarctic seaweeds: a functional trait based approach to characterize vertical zonation. Progress in Oceanography, 174, 17–27. https://doi.org/10.1016/j.pocean.2018.03.013
Jofre, J., Celis-Plá, P. S. M., Figueroa, F. L., & Navarro, N. P. (2020). Seasonal variation of mycosporine-like amino acids in three subantarctic red seaweeds. Marine Drugs, 18(2), 75. https://doi.org/10.3390/md18020075
Lalegerie, F., Gager, L., Stiger-Pouvreau, V., & Connan, S. (2020). The stressful life of red and brown seaweeds on the temperate intertidal zone: Effect of abiotic and biotic parameters on the physiology of macroalgae and content variability of particular metabolites. In N. Bourgougnon (Ed.), Seaweeds Around the World: State of Art and Perspectives (pp. 247–287). Germany: Elsevier.
Gómez, I., & Huovinen, P. (2020). Brown algal phlorotannins: an overview of their functional roles. In I. Gómez & P. Huovinen (Eds.), Antarctic Seaweeds (pp. 365–388). Cham Switzerland: Springer.
Mannino, A. M., & Micheli, C. (2020). Ecological function of phenolic compounds from mediterranean fucoid algae and seagrasses: an overview on the genus Cystoseira sensu lato and Posidonia oceanica (L.) Delile. Journal of Marine Science and Engineering., 8(1), 19. https://doi.org/10.3390/jmse8010019
Polo, L. K., & Chow, F. (2020). Physiological performance by growth rate, pigment and protein content of the brown seaweed Sargassum filipendula (Ochrophyta: Fucales) induced by moderate UV radiation exposure in the laboratory. Scientia Marina, 84(1), 59. https://doi.org/10.3989/scimar.04982.22A
Schmitz, C., Ramlov, F., de Lucena, L. A. F., Uarrota, V., Batista, M. B., Sissini, M. N., Oliveira, I., Briani, B., Martins, C. D. L., Nunes, J. M. D. C., Rörig, L., Horta, P. A., Figueroa, F. L., Korbee, N., Maraschin, M., & Bonomi-Barufi, J. (2018). UVR and PAR absorbing compounds of marine brown macroalgae along a latitudinal gradient of the Brazilian coast. Journal of Photochemistry and Photobiology B: Biology., 178, 165–174. https://doi.org/10.1016/j.jphotobiol.2017.10.029
Pescheck, F. (2019). UV-A screening in Cladophora sp lowers internal UV-A availability and photoreactivation as compared to non-UV screening in Ulva intestinalis. Photochemical & Photobiological Sciences., 18(2), 413–423. https://doi.org/10.1039/C8PP00432C
Berkelmans, R., & Willis, B. L. (1999). Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef. Coral Reefs, 18(3), 219–228. https://doi.org/10.1007/s003380050186
Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research, 50(8), 839–866. https://doi.org/10.1071/mf99078
van de Water, J. A. J. M., Courtial, L., Houlbrèque, F., Jacquet, S., & Ferrier-Pagès, C. (2018). Ultraviolet radiation has a limited impact on seasonal differences in the Acropora muricata Holobiont. Frontiers in Marine Science, 5, 275. https://doi.org/10.3389/fmars.2018.00275
Zhou, J., Fan, T.-Y., Beardall, J., & Gao, K. (2017). UV-A induced delayed development in the larvae of coral Seriatopora caliendrum. Journal of Photochemistry and Photobiology B: Biology, 167, 249–255. https://doi.org/10.1016/j.jphotobiol.2017.01.007
Zhou, J., Huang, H., Beardall, J., & Gao, K. (2017). Effect of UV radiation on the expulsion of Symbiodinium from the coral Pocillopora damicornis. Journal of Photochemistry and Photobiology B: Biology, 166, 12–17. https://doi.org/10.1016/j.jphotobiol.2016.11.003
Mouchi, V., Chapron, L., Peru, E., Pruski, A. M., Meistertzheim, A. L., Vetion, G., Galand, P. E., & Lartaud, F. (2019). Long-term aquaria study suggests species-specific responses of two cold-water corals to macro-and microplastics exposure. Environmental Pollution, 253, 322–329. https://doi.org/10.1016/j.envpol.2019.07.024
Nordborg, F. M., Flores, F., Brinkman, D. L., Agustí, S., & Negri, A. P. (2018). Phototoxic effects of two common marine fuels on the settlement success of the coral Acropora tenuis. Scientific Reports, 8(1), 8635. https://doi.org/10.1038/s41598-018-26972-7
McCauley, M., Banaszak, A. T., & Goulet, T. L. (2018). Species traits dictate seasonal-dependent responses of octocoral–algal symbioses to elevated temperature and ultraviolet radiation. Coral Reefs, 37(3), 901–917. https://doi.org/10.1007/s00338-018-1716-8
Banaszak, A. T., Barba Santos, M. G., LaJeunesse, T. C., & Lesser, M. P. (2006). The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. Journal of Experimental Marine Biology and Ecology, 337(2), 131–146. https://doi.org/10.1016/j.jembe.2006.06.014
Courtial, L., Planas Bielsa, V., Houlbrèque, F., & Ferrier-Pagès, C. (2018). Effects of ultraviolet radiation and nutrient level on the physiological response and organic matter release of the scleractinian coral Pocillopora damicornis following thermal stress. PLoS ONE, 13(10), 0205261. https://doi.org/10.1371/journal.pone.0205261
Blanckaert, A. C. A., de Barros Marangoni, L. F., Rottier, C., Grover, R., & Ferrier-Pagès, C. (2021). Low levels of ultra-violet radiation mitigate the deleterious effects of nitrate and thermal stress on coral photosynthesis. Marine Pollution Bulletin., 167, 112257. https://doi.org/10.1016/j.marpolbul.2021.112257
Henley, E. M., Quinn, M., Bouwmeester, J., Daly, J., Zuchowicz, N., Lager, C., Bailey, D. W., & Hagedorn, M. (2021). Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Scientific Reports, 11(1), 12525. https://doi.org/10.1038/s41598-021-91030-8
Álvarez-Gómez, F., Korbee, N., Casas-Arrojo, V., Abdala-Díaz, R., & Figueroa, F. (2019). UV Photoprotection, cytotoxicity and immunology capacity of red algae extracts. Molecules, 24(2), 341. https://doi.org/10.3390/molecules24020341
Bonaventura, R., & Matranga, V. (2017). Overview of the molecular defense systems used by sea urchin embryos to cope with UV radiation. Marine Environmental Research, 128, 25–35. https://doi.org/10.1016/j.marenvres.2016.05.019
Shick, J. M., Romaine-Lioud, S., Romaine-Lioud, S., Ferrier-Pagès, C., & Gattuso, J. P. (1999). Ultraviolet-B radiation stimulates shikimate pathway-dependent accumulation of mycosporine-like amino acids in the coral Stylophora pistillata despite decreases in its population of symbiotic dinoflagellates. Limnology and Oceanography, 44(7), 1667–1682. https://doi.org/10.4319/lo.1999.44.7.1667
Cubillos, V. M., Ramírez, E. F., Cruces, E., Montory, J. A., Segura, C. J., & Mardones, D. A. (2018). Temporal changes in environmental conditions of a mid-latitude estuary (southern Chile) and its influences in the cellular response of the euryhaline anemone Anthopleura hermaphroditica. Ecological Indicators, 88, 169–180. https://doi.org/10.1016/j.ecolind.2018.01.015
Brasseur, L., Demeyer, M., Decroo, C., Caulier, G., Flammang, P., Gerbaux, P., & Eeckhaut, I. (2018). Identification and quantification of spinochromes in body compartments of Echinometra mathaei’s coloured types. Royal Society Open Science., 5(8), 171213. https://doi.org/10.1098/rsos.171213
Hylander, S., Grenvald, J. C., Kiørboe, T., & Pfrender, M. (2014). Fitness costs and benefits of ultraviolet radiation exposure in marine pelagic copepods. Functional Ecology, 28(1), 149–158. https://doi.org/10.1111/1365-2435.12159
Williamson, C. E., Neale, P. J., Grad, G., De Lange, H. J., & Hargreaves, B. R. (2001). Beneficial and detrimental effects of UV radiation: Implications of variation in the spectral composition of environmental radiation for aquatic organisms. Ecological Applications, 11, 1843–1857. https://doi.org/10.1890/1051-0761(2001)011[1843:BADEOU]2.0.CO;2
Sonntag, B., & Sommaruga, R. (2020). Effectiveness of photoprotective strategies in three mixotrophic planktonic ciliate species. Diversity, 12(6), 252. https://doi.org/10.3390/d12060252
Neale, R. E., Barnes, P. W., Robson, T. M., Neale, P. J., Williamson, C. E., Zepp, R. G., Wilson, S. R., Madronich, S., Andrady, A. L., Heikkilä, A. M., Bernhard, G. H., Bais, A. F., Aucamp, P. J., Banaszak, A. T., Bornman, J. F., Bruckman, L. S., Byrne, S. N., Foereid, B., Häder, D. P., Hollestein, L. M., et al. (2021). Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochemical Photobiological Sciences, 20(1), 1–67. https://doi.org/10.1007/s43630-020-00001-x
Laspoumaderes, C., Bastidas Navarro, M., Souza, M. S., Modenutti, B., & Balseiro, E. (2019). Effect of ultraviolet radiation on clearance rate of planktonic copepods with different photoprotective strategies. International Review of Hydrobiology, 104(1–2), 34–44. https://doi.org/10.1002/iroh.201801960
Wolinski, L., Souza, M. S., Modenutti, B., & Balseiro, E. (2020). Effect of chronic UVR exposure on zooplankton molting and growth. Environmental Pollution., 267, 115448. https://doi.org/10.1016/j.envpol.2020.115448
Bancroft, B. A., Baker, N. J., & Blaustein, A. R. (2007). Effects of UVB radiation on marine and freshwater organisms: a synthesis through meta-analysis. Ecology Letters, 10(4), 332–345. https://doi.org/10.1111/j.1461-0248.2007.01022.x
Llabrés, M., Agustí, S., Fernández, M., Canepa, A., Maurin, F., Vidal, F., Duarte, C. M., & Rex, M. (2013). Impact of elevated UVB radiation on marine biota: a meta-analysis. Global Ecology and Biogeography, 22(1), 131–144. https://doi.org/10.1111/j.1466-8238.2012.00784.x
Peng, X., Fan, Y., Jin, J., Xiong, S., Liu, J., & Tang, C. (2017). Bioaccumulation and biomagnification of ultraviolet absorbents in marine wildlife of the Pearl River Estuarine, South China Sea. Environmental Pollution, 225, 55–65. https://doi.org/10.1016/j.envpol.2017.03.035
Bashevkin, S. M., Christy, J. H., & Morgan, S. G. (2020). Costs and compensation in zooplankton pigmentation under countervailing threats of ultraviolet radiation and predation. Oecologia, 193(1), 111–123. https://doi.org/10.1007/s00442-020-04648-2
Bashevkin, S. M., Christy, J. H., Morgan, S. G., & Clusella Trullas, S. (2019). Adaptive specialization and constraint in morphological defences of planktonic larvae. Functional Ecology, 34(1), 217–228. https://doi.org/10.1111/1365-2435.13464
Eshun-Wilson, F., Wolf, R., Andersen, T., Hessen, D. O., & Sperfeld, E. (2020). UV radiation affects antipredatory defense traits in Daphnia pulex. Ecology and Evolution, 10(24), 14082–14097. https://doi.org/10.1002/ece3.6999
Stabile, F., Bronmark, C., Hansson, L. A., & Lee, M. (2021). Fitness cost from fluctuating ultraviolet radiation in Daphnia magna. Biology Letters, 17(8), 20210261. https://doi.org/10.1098/rsbl.2021.0261
Hansson, L.-A., & Hylander, S. (2009). Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochemical & Photobiological Sciences, 8(9), 1266. https://doi.org/10.1039/b908825c
Lee, M., Zhang, H., Sha, Y., Hegg, A., Ugge, G. E., Vinterstare, J., Škerlep, M., Pärssinen, V., Herzog, S. D., Björnerås, C., Gollnisch, R., Johansson, E., Hu, N., Nilsson, P. A., Hulthén, K., Rengefors, K., Langerhans, R. B., Brönmark, C., & Hansson, L.-A. (2019). Low-latitude zooplankton pigmentation plasticity in response to multiple threats. Royal Society Open Science., 6(7), 190321. https://doi.org/10.1098/rsos.190321
Marcoval, M. A., Pan, J., Diaz, A. C., & Fenucci, J. L. (2021). Dietary bioaccumulation of UV-absorbing compounds, and post-ingestive fitness in larval planktotrophic crustaceans from coastal SW Atlantic. Marine Environmental Research., 170, 105433. https://doi.org/10.1016/j.marenvres.2021.105433
Wolinski, L., Modenutti, B., & Balseiro, E. (2020). Melanin and antipredatory defenses in Daphnia dadayana under UVR exposure. International Review of Hydrobiology, 105(3–4), 106–114. https://doi.org/10.1002/iroh.201902033
Fernandéz, C. E., Campero, M., Bianco, G., Ekvall, M. T., Rejas, D., Uvo, C. B., & Hansson, L. A. (2020). Local adaptation to UV radiation in zooplankton: a behavioral and physiological approach. Ecosphere., 11, e03081. https://doi.org/10.1002/ecs2.3081
Sha, Y., Tesson, S. V. M., & Hansson, L. A. (2020). Diverging responses to threats across generations in zooplankton. Ecology, 101, e03145. https://doi.org/10.1002/ecy.3145
Dur, G., Won, E.-J., Han, J., Lee, J.-S., & Souissi, S. (2021). An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction. Ecological Modelling., 441, 109379. https://doi.org/10.1016/j.ecolmodel.2020.109379
Ekvall, M. T., Sha, Y., Palmér, T., Bianco, G., Bäckman, J., Åström, K., & Hansson, L. A. (2020). Behavioural responses to co-occurring threats of predation and ultraviolet radiation in Daphnia. Freshwater Biology, 65(9), 1509–1517. https://doi.org/10.1111/fwb.13516
Lee, M., & Hansson, L. A. (2021). Daphnia magna trade-off safety from UV radiation for food. Ecology and Evolution, 11(24), 18026–18031. https://doi.org/10.1002/ece3.8399
Rose, K. C., Williamson, C. E., Fischer, J. M., Connelly, S. J., Olson, M., Tucker, A. J., & Noe, D. A. (2012). The role of ultraviolet radiation and fish in regulating the vertical distribution of Daphnia. Limnology and Oceanography, 57(6), 1867–1876. https://doi.org/10.4319/lo.2012.57.6.1867
Urmy, S. S., Williamson, C. E., Leach, T. H., Schladow, S. G., Overholt, E. P., & Warren, J. D. (2016). Vertical redistribution of zooplankton in an oligotrophic lake associated with reduction in ultraviolet radiation by wildfire smoke. Geophysical Research Letters, 43(8), 3746–3753. https://doi.org/10.1002/2016gl068533
Williamson, C. E., Overholt, E. P., Brentrup, J. A., Pilla, R. M., Leach, T. H., Schladow, S. G., Warren, J. D., Urmy, S. S., Sadro, S., Chandra, S., & Neale, P. J. (2016). Sentinel responses to droughts, wildfires, and floods: Ultraviolet radiation and the consequences for lakes and their ecosystem services. Frontiers in Ecology and Environment, 14, 102–109. https://doi.org/10.1002/fee.1228
Scordo, F., Chandra, S., Suenaga, E., Kelson, S. J., Culpepper, J., Scaff, L., Tromboni, F., Caldwell, T. J., Seitz, C., Fiorenza, J. E., Williamson, C. E., Sadro, S., Rose, K. C., & Poulson, S. R. (2021). Smoke from regional wildfires alters lake ecology. Scientific Reports, 11(1), 10922. https://doi.org/10.1038/s41598-021-89926-6
Sha, Y., Zhang, H., Lee, M., Björnerås, C., Škerlep, M., Gollnisch, R., Herzog, S. D., Ekelund Ugge, G., Vinterstare, J., Hu, N., Pärssinen, V., Hulthén, K., Nilsson, P. A., Rengefors, K., Brönmark, C., Langerhans, R. B., & Hansson, L.-A. (2020). Diel vertical migration of copepods and its environmental drivers in subtropical Bahamian blue holes. Aquatic Ecology, 55(4), 1157–1169. https://doi.org/10.1007/s10452-020-09807-4
Oester, R., Greenway, R., Moosmann, M., Sommaruga, R., Tartarotti, B., Brodersen, J., & Matthews, B. (2022). The influence of predator community composition on photoprotective traits of copepods. Ecology and Evolution., 12(4), e8862. https://doi.org/10.1002/ece3.8862
Marinone, M. C., Marque, S. M., Suárez, D. A., del Carmen Diéguez, M., Pérez, P., De Los Ríos, P., Soto, D., & Zagarese, H. E. (2006). UV radiation as a potential driving force for zooplankton community structure in Patagonian lakes. Photochemistry and Photobiology, 82(4), 962. https://doi.org/10.1562/2005-09-09-ra-680
Williamson, C. E., Olson, O. G., Lott, S. E., Walker, N. D., Engstrom, D. R., & Hargreaves, B. R. (2001). Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay. Alaska. Ecology, 82(6), 1748–1760. https://doi.org/10.1890/0012-9658(2001)082[1748:Urazcs]2.0.Co;2
Caputo, L., Huovinen, P., Sommaruga, R., & Gómez, I. (2018). Water transparency affects the survival of the medusa stage of the invasive freshwater jellyfish Craspedacusta sowerbii. Hydrobiologia, 817(1), 179–191. https://doi.org/10.1007/s10750-018-3520-4
Lindholm, M., Wolf, R., Finstad, A., & Hessen, D. O. (2016). Water browning mediates predatory decimation of the Arctic fairy shrimp Branchinecta paludosa. Freshwater Biology, 61(3), 340–347. https://doi.org/10.1111/fwb.12712
Alves, R. N., & Agustí, S. (2020). Effect of ultraviolet radiation (UVR) on the life stages of fish. Reviews in Fish Biology and Fisheries, 30(2), 335–372. https://doi.org/10.1007/s11160-020-09603-1
Lawrence, K. P., Young, A. R., Diffey, B. L., & Norval, M. (2019). The impact of solar ultraviolet radiation on fish: immunomodulation and photoprotective strategies. Fish and Fisheries, 21(1), 104–119. https://doi.org/10.1111/faf.12420
Araujo, M. J., Quintaneiro, C., Soares, A., & Monteiro, M. S. (2021). Effects of ultraviolet radiation to Solea senegalensis during early development. Science of the Total Environment., 764, 142899. https://doi.org/10.1016/j.scitotenv.2020.142899
Pasparakis, C., Wang, Y., Heuer, R. M., Zhang, W., Stieglitz, J. D., McGuigan, C. J., Benetti, D. D., Scholey, V. P., Margulies, D., & Grosell, M. (2022). Ultraviolet avoidance by embryonic buoyancy control in three species of marine fish. Science of the Total Environment., 806(Pt 3), 150542. https://doi.org/10.1016/j.scitotenv.2021.150542
Pasparakis, C., Wang, Y., Stieglitz, J. D., Benetti, D. D., & Grosell, M. (2019). Embryonic buoyancy control as a mechanism of ultraviolet radiation avoidance. Science of the Total Environment, 651(Pt 2), 3070–3078. https://doi.org/10.1016/j.scitotenv.2018.10.093
Ward, C. P., Bowen, J. C., Freeman, D. H., & Sharpless, C. M. (2021). Rapid and reproducible characterization of the wavelength dependence of aquatic photochemical reactions using light-emitting diodes. Environmental Science & Technology Letters, 8(5), 437–442. https://doi.org/10.1021/acs.estlett.1c00172
Pandey, U. C., Nayak, S. R., Roka, K., & Jain, T. K. (2021). SDG14—life below water: towards sustainable management of our oceans. Bingley, UK: Emerald Publishing Limited.