The reproducibility of measuring maximum abdominal aortic aneurysm diameter from ultrasound images

The Ultrasound Journal - Tập 13 Số 1 - 2021
Evan O. Matthews1, Jenna Pinchbeck1, Kylie Elmore2, Rhondda Jones3, Joseph V. Moxon3,1, Jonathan Golledge3,2,1
1Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia
2Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Australia
3Australian Institute for Tropical Health and Medicine, James Cook University, Townsville, Australia

Tóm tắt

Abstract Background Accurate repeat assessment of the diameter of an abdominal aortic aneurysm (AAA) is important. This study investigated the reproducibility of different methods of measuring AAA diameter from ultrasound images. Methods Fifty AAA patients were assessed by ultrasound. Maximum AAA diameter was measured independently by three trained observers on two separate occasions using a standardised protocol. Five diameters were measured from each scan, three in the anterior–posterior (AP) and two in the transverse (TV) plane, including inner-to-inner (ITI), outer-to-outer (OTO) and leading edge-to-leading edge (LETLE). Intra- and inter-observer reproducibility were reported as reproducibility coefficients. Statistical comparison of methods was performed using linear mixed effects models. Results Intra-observer reproducibility coefficients (AP LETLE 2.2 mm; AP ITI 2.4 mm; AP OTO 2.6 mm) were smaller than inter-observer reproducibility coefficients (AP LETLE 4.6 mm: AP ITI 4.5; and AP OTO 4.8 mm). There was no statistically significant difference in intra-observer reproducibility of three types of measurements performed in the AP plane. Measurements obtained in the TV plane had statistically significant worse intra-observer reproducibility than those performed in the AP plane. Conclusions This study suggests that the comparison of maximum AAA diameter between repeat images is most reproducibly performed by a single trained observer measuring diameters in the AP plane.

Từ khóa


Tài liệu tham khảo

Grondal N, Sogaard R, Lindholt JS (2015) Baseline prevalence of abdominal aortic aneurysm, peripheral arterial disease and hypertension in men aged 65–74 years from a population screening study (VIVA trial). Br J Surg 102(8):902–906. https://doi.org/10.1002/bjs.9825

Li X, Zhao G, Zhang J, Duan Z, Xin S (2013) Prevalence and trends of the abdominal aortic aneurysms epidemic in general population-a meta-analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0081260

Lederle FA, Johnson GR, Wilson SE, Ballard DJ, Jordan WD Jr, Blebea J et al (2002) Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. J Am Med Assoc 287(22):2968–2972. https://doi.org/10.1001/jama.287.22.2968

Brady AR, Thompson SG, Fowkes FGR, Greenhalgh RM, Powell JT (2004) Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation 110(1):16–21. https://doi.org/10.1161/01.CIR.0000133279.07468.9F

Vardulaki KA, Prevost TC, Walker NM, Day NE, Wilmink ABM, Quick CRG et al (1998) Growth rates and risk of rupture of abdominal aortic aneurysms. BJS 85(12):1674–1680. https://doi.org/10.1046/j.1365-2168.1998.00946.x

Wanhainen A, Verzini F, Van Herzeele I, Allaire E, Bown M, Cohnert T et al (2019) European Society for Vascular Surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J Vasc Endovasc Surg 57(1):8–93. https://doi.org/10.1016/j.ejvs.2018.09.020 (Epub 2018/12/12)

Chaikof EL, Dalman RL, Eskandari MK, Jackson BM, Lee WA, Mansour MA et al (2018) The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg 67(1):2-77.e2. https://doi.org/10.1016/j.jvs.2017.10.044

Golledge J (2019) Abdominal aortic aneurysm: update on pathogenesis and medical treatments. Nat Rev Cardiol 16(4):225–242. https://doi.org/10.1038/s41569-018-0114-9

Golledge J, Norman PE, Murphy MP, Dalman RL (2017) Challenges and opportunities in limiting abdominal aortic aneurysm growth. J Vasc Surg 65(1):225–233. https://doi.org/10.1016/j.jvs.2016.08.003

Morris DR, Cunningham MA, Ahimastos AA, Kingwell BA, Pappas E, Bourke M et al (2015) TElmisartan in the management of abDominal aortic aneurYsm (TEDY): The study protocol for a randomized controlled trial. Trials. https://doi.org/10.1186/s13063-015-0793-z

Long A, Rouet L, Lindholt JS, Allaire E (2012) Measuring the maximum diameter of native abdominal aortic aneurysms: review and critical analysis. Eur J Vasc Endovasc Surg 43(5):515–524. https://doi.org/10.1016/j.ejvs.2012.01.018

Powell JT, Brown LC, Forbes JF, Fowkes FG, Greenhalgh RM, Ruckley CV et al (2007) Final 12-year follow-up of surgery versus surveillance in the UK Small Aneurysm Trial. The Br J Surg 94(6):702–708. https://doi.org/10.1002/bjs.5778 (Epub 2007/05/22)

Participants TU (1998) Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. The UK Small Aneurysm Trial Participants. Lancet 352(9141):1649–1655 (Epub 1998/12/16)

Hartshorne TC, McCollum CN, Earnshaw JJ, Morris J, Nasim A (2011) Ultrasound measurement of aortic diameter in a national screening programme. Eur J Vasc Endovasc Surg 42(2):195–199. https://doi.org/10.1016/j.ejvs.2011.02.030 (Epub 2011/03/29)

Wanhainen A, Bjorck M (2011) The Swedish experience of screening for abdominal aortic aneurysm. J Vasc Surg. 53(4):1164–1165. https://doi.org/10.1016/j.jvs.2010.10.099 (Epub 2011/03/29)

Borgbjerg J, Bogsted M, Lindholt JS, Behr-Rasmussen C, Horlyck A, Frokjaer JB (2018) Superior reproducibility of the leading to leading edge and inner to inner edge methods in the ultrasound assessment of maximum abdominal aortic diameter. Eur J Vasc Endovasc Surg 55(2):206–213. https://doi.org/10.1016/j.ejvs.2017.11.019 (Epub 2017/12/27)

Chiu KWH, Ling L, Tripathi V, Ahmed M, Shrivastava V (2014) Ultrasound measurement for abdominal aortic aneurysm screening: a direct comparison of the three leading methods. Eur J Vasc Endovasc Surg 47(4):367–373. https://doi.org/10.1016/j.ejvs.2013.12.026

Gurtelschmid M, Bjorck M, Wanhainen A (2014) Comparison of three ultrasound methods of measuring the diameter of the abdominal aorta. Br J Surg 101(6):633–636. https://doi.org/10.1002/bjs.9463 (Epub 2014/04/12)

Pinchbeck JL, Moxon JV, Rowbotham SE, Bourke M, Lazzaroni S, Morton SK, et al. Randomized Placebo-Controlled Trial Assessing the Effect of 24-Week Fenofibrate Therapy on Circulating Markers of Abdominal Aortic Aneurysm: Outcomes From the FAME-2 Trial. J Am Heart Assoc. 2018;7(19):e009866. doi: https://doi.org/10.1161/JAHA.118.009866. Epub 2018/10/30

Thapar A, Cheal D, Hopkins T, Ward S, Shaloub J, Yusuf SW (2010) Internal or external wall diameter for abdominal aortic aneurysm screening? Ann R Coll Surg Engl 92(6):503–505. https://doi.org/10.1308/003588410X12699663903430

Fernando ME, Crowther RG, Cunningham M, Lazzarini PA, Sangla KS, Golledge J (2015) Lower limb biomechanical characteristics of patients with neuropathic diabetic foot ulcers: The diabetes foot ulcer study protocol. BMC Endocr Disord. https://doi.org/10.1186/s12902-015-0057-7

Beales L, Wolstenhulme S, Evans JA, West R, Scott DJ (2011) Reproducibility of ultrasound measurement of the abdominal aorta. Br J Surg. 98(11):1517–1525. https://doi.org/10.1002/bjs.7628 (Epub 2011/08/24)

Akkersdijk GJM, Puylaert JBCM, Coerkamp EG, De Vries AC (1994) Accuracy of ultrasonographic measurement of infrarenal abdominal aortic aneurysm. Br J Surg. 81(3):376. https://doi.org/10.1002/bjs.1800810317

Bonnafy T, Lacroix P, Desormais I, Labrunie A, Marin B, Leclerc A et al (2013) Reliability of the measurement of the abdominal aortic diameter by novice operators using a pocket-sized ultrasound system. Arch Cardiovasc Dis 106(12):644–650. https://doi.org/10.1016/j.acvd.2013.08.004

Bredahl K, Eldrup N, Meyer C, Eiberg JE, Sillesen H (2013) Reproducibility of ECG-gated ultrasound diameter assessment of small abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 45(3):235–240. https://doi.org/10.1016/j.ejvs.2012.12.010 (Epub 2013/01/22)

Crilly MA, Mundie A, Bachoo P, Bruce P, Colvin FA, Geddes WA et al (2016) Clinical agreement between nurses in the ultrasound measurement of abdominal aortic diameter within a National Screening Programme. Ann Vasc Surg 33:194–201. https://doi.org/10.1016/j.avsg.2015.11.020

Ellis M, Powell JT, Greenhalgh RM (1991) Limitations of ultrasonography in surveillance of small abdominal aortic aneurysms. Br J Surg 78(5):614–616. https://doi.org/10.1002/bjs.1800780529

Grøndal N, Bramsen MB, Thomsen MD, Rasmussen CB, Lindholt JS (2012) The cardiac cycle is a major contributor to variability in size measurements of abdominal aortic aneurysms by ultrasound. Eur J Vasc Endovasc Surg 43(1):30–33. https://doi.org/10.1016/j.ejvs.2011.09.025

Jaakkola P, Hippelainen M, Farin P, Rytkonen H, Kainulainen S, Partanen K (1996) Interobserver variability in measuring the dimensions of the abdominal aorta: Comparison of ultrasound and computed tomography. Eur J Vasc Endovasc Surg 12(2):230–237. https://doi.org/10.1016/S1078-5884(96)80112-2

Lanne T, Sandgren T, Mangell P, Sonesson B, Hansen F (1997) Improved reliability of ultrasonic surveillance of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 13(2):149–153. https://doi.org/10.1016/S1078-5884(97)80011-1

Lindholt JS, Vammen S, Juul S, Henneberg EW, Fasting H (1999) The validity of ultrasonographic scanning as screening method for abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 17(6):472–475. https://doi.org/10.1053/ejvs.1999.0835

Pleumeekers HJCM, Hoes AW, Mulder PGH, Van Der Does E, Hofman A, Laméris JS et al (1998) Differences in observer variability of ultrasound measurements of the proximal and distal abdominal aorta. J Med Screen 5(2):104–108. https://doi.org/10.1136/jms.5.2.104

Singh K, Bonaa KH, Solberg S, Sorlie DG, Bjork L (1998) Intra- and interobserver variability in ultrasound measurements of abdominal aortic diameter. The Tromso study. Eur J Vasc Endovasc Surg 15(6):497–504. https://doi.org/10.1016/S1078-5884(98)80109-3