The renin–angiotensin system in cardiovascular autonomic control: recent developments and clinical implications

Clinical Autonomic Research - Tập 29 Số 2 - Trang 231-243 - 2019
Amanda J. Miller1, Amy C. Arnold1
1Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kurtz A (2011) Renin release: sites, mechanisms, and control. Annu Rev Physiol 73:377–399

Lavoie JL, Sigmund CD (2003) Minireview: overview of the renin-angiotensin system–an endocrine and paracrine system. Endocrinology 144(6):2179–2183

Te Riet L, van Esch JH, Roks AJ, van den Meiracker AH, Danser AH (2015) Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 116(6):960–975

Lavoie JL, Liu X, Bianco RA, Beltz TG, Johnson AK, Sigmund CD (2006) Evidence supporting a functional role for intracellular renin in the brain. Hypertension 47(3):461–466

Li XC, Zhu D, Zheng X, Zhang J, Zhuo JL (2018) Intratubular and intracellular renin-angiotensin system in the kidney: a unifying perspective in blood pressure control. Clin Sci (Lond) 132(13):1383–1401

Uehara Y, Miura S, Yahiro E, Saku K (2013) Non-ACE pathway-induced angiotensin II production. Curr Pharm Des 19(17):3054–3059

Zhuo JL, Li XC (2011) New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides 32(7):1551–1565

Lemarie CA, Schiffrin EL (2010) The angiotensin II type 2 receptor in cardiovascular disease. J Renin Angiotensin Aldosterone Syst 11(1):19–31

Yugandhar VG, Clark MA (2013) Angiotensin III: a physiological relevant peptide of the renin angiotensin system. Peptides 46:26–32

Dupont AG, Brouwers S (2010) Brain angiotensin peptides regulate sympathetic tone and blood pressure. J Hypertens 28(8):1599–1610

Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J, Kon N, Dell’italia LJ (2014) An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci (Lond) 126(7):461–469

Campbell DJ (2008) Critical review of prorenin and (pro)renin receptor research. Hypertension 51(5):1259–1264

Santos RA (2014) Angiotensin-(1–7). Hypertension 63(6):1138–1147

Leonhardt J, Villela DC, Teichmann A, Munter LM, Mayer MC, Mardahl M, Kirsch S, Namsolleck P, Lucht K, Benz V, Alenina N, Daniell N, Horiuchi M, Iwai M, Multhaup G, Schulein R, Bader M, Santos RA, Unger T, Steckelings UM (2017) Evidence for heterodimerization and functional interaction of the angiotensin type 2 receptor and the receptor MAS. Hypertension 69(6):1128–1135

Gaidarov I, Adams J, Frazer J, Anthony T, Chen X, Gatlin J, Semple G, Unett DJ (2018) Angiotensin (1–7) does not interact directly with MAS1, but can potently antagonize signaling from the AT1 receptor. Cell Signal 50:9–24

Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, Jankowski J, Jankowski V, Sousa F, Alzamora A, Soares E, Barbosa C, Kjeldsen F, Oliveira A, Braga J, Savergnini S, Maia G, Peluso AB, Passos-Silva D, Ferreira A, Alves F, Martins A, Raizada M, Paula R, Motta-Santos D, Klempin F, Pimenta A, Alenina N, Sinisterra R, Bader M, Campagnole-Santos MJ, Santos RA (2013) Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res 112(8):1104–1111

Villela DC, Passos-Silva DG, Santos RA (2014) Alamandine: a new member of the angiotensin family. Curr Opin Nephrol Hypertens 23(2):130–134

Iliescu R, Lohmeier TE, Tudorancea I, Laffin L, Bakris GL (2015) Renal denervation for the treatment of resistant hypertension: review and clinical perspective. Am J Physiol Renal Physiol 309(7):F583–F594

Hong MN, Li XD, Chen DR, Ruan CC, Xu JZ, Chen J, Wu YJ, Ma Y, Zhu DL, Gao PJ (2016) Renal denervation attenuates aldosterone expression and associated cardiovascular pathophysiology in angiotensin II-induced hypertension. Oncotarget 7(42):67828–67840

Averill DB, Diz DI (2000) Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 51(2):119–128

Reid IA (1992) Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol 262(6 Pt 1):E763–E778

Lohmeier TE (2012) Angiotensin II infusion model of hypertension: is there an important sympathetic component? Hypertension 59(3):539–541

Leenen FH (2014) Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension. Am J Hypertens 27(8):1024–1032

Allen AM, Zhuo J, Mendelsohn FA (2000) Localization and function of angiotensin AT1 receptors. Am J Hypertens 13(1 Pt 2):31S–38S

Hirooka Y, Kishi T, Ito K, Sunagawa K (2013) Potential clinical application of recently discovered brain mechanisms involved in hypertension. Hypertension 62(6):995–1002

Huber G, Schuster F, Raasch W (2017) Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 125(Pt A):72–90

de Queiroz TM, Monteiro MM, Braga VA (2013) Angiotensin-II-derived reactive oxygen species on baroreflex sensitivity during hypertension: new perspectives. Front Physiol 4:105

Schaich CL, Shaltout HA, Grabenauer M, Thomas BF, Gallagher PE, Howlett AC, Diz DI (2015) Alterations in the medullary endocannabinoid system contribute to age-related impairment of baroreflex sensitivity. J Cardiovasc Pharmacol 65(5):473–479

Pellegrino PR, Schiller AM, Haack KK, Zucker IH (2016) Central angiotensin-II increases blood pressure and sympathetic outflow via rho kinase activation in conscious rabbits. Hypertension 68(5):1271–1280

Arnold AC, Isa K, Shaltout HA, Nautiyal M, Ferrario CM, Chappell MC, Diz DI (2010) Angiotensin-(1–12) requires angiotensin converting enzyme and AT1 receptors for cardiovascular actions within the solitary tract nucleus. Am J Physiol Heart Circ Physiol 299(3):H763–H771

Houghton BL, Huang C, Johns EJ (2010) Influence of dietary sodium on the blood pressure and renal sympathetic nerve activity responses to intracerebroventricular angiotensin II and angiotensin III in anaesthetized rats. Exp Physiol 95(2):282–295

Marc Y, Llorens-Cortes C (2011) The role of the brain renin-angiotensin system in hypertension: implications for new treatment. Prog Neurobiol 95(2):89–103

Huang BS, Ahmad M, White RA, Marc Y, Llorens-Cortes C, Leenen FH (2013) Inhibition of brain angiotensin III attenuates sympathetic hyperactivity and cardiac dysfunction in rats post-myocardial infarction. Cardiovasc Res 97(3):424–431

Kokje RJ, Wilson WL, Brown TE, Karamyan VT, Wright JW, Speth RC (2007) Central pressor actions of aminopeptidase-resistant angiotensin II analogs: challenging the angiotensin III hypothesis. Hypertension 49(6):1328–1335

Matsukawa T, Gotoh E, Minamisawa K, Kihara M, Ueda S, Shionoiri H, Ishii M (1991) Effects of intravenous infusions of angiotensin II on muscle sympathetic nerve activity in humans. Am J Physiol 261(3 Pt 2):R690–R696

Sayk F, Wobbe I, Twesten C, Meusel M, Wellhoner P, Derad I, Dodt C (2015) Prolonged blood pressure elevation following continuous infusion of angiotensin II-a baroreflex study in healthy humans. Am J Physiol Regul Integr Comp Physiol 309(11):R1406–R1414

Goldsmith SR, Hasking GJ, Miller E (1993) Angiotensin II and sympathetic activity in patients with congestive heart failure. J Am Coll Cardiol 21(5):1107–1113

Goldsmith SR, Hasking GJ (1995) Angiotensin II inhibits the forearm vascular response to increased arterial pressure in humans. J Am Coll Cardiol 25(1):246–250

Townend JN, Al-Ani M, West JN, Littler WA, Coote JH (1995) Modulation of cardiac autonomic control in humans by angiotensin II. Hypertension 25(6):1270–1275

Ruhs S, Nolze A, Hubschmann R, Grossmann C (2017) 30 years of the mineralocorticoid receptor: nongenomic effects via the mineralocorticoid receptor. J Endocrinol 234(1):T107–T124

Downey RM, Mizuno M, Mitchell JH, Vongpatanasin W, Smith SA (2017) Mineralocorticoid receptor antagonists attenuate exaggerated exercise pressor reflex responses in hypertensive rats. Am J Physiol Heart Circ Physiol 313(4):H788–H794

Yee KM, Struthers AD (1998) Aldosterone blunts the baroreflex response in man. Clin Sci (Lond) 95(6):687–692

Schmidt BM, Montealegre A, Janson CP, Martin N, Stein-Kemmesies C, Scherhag A, Feuring M, Christ M, Wehling M (1999) Short term cardiovascular effects of aldosterone in healthy male volunteers. J Clin Endocrinol Metab 84(10):3528–3533

Heindl S, Holzschneider J, Hinz A, Sayk F, Fehm HL, Dodt C (2006) Acute effects of aldosterone on the autonomic nervous system and the baroreflex function in healthy humans. J Neuroendocrinol 18(2):115–121

Monahan KD, Leuenberger UA, Ray CA (2007) Aldosterone impairs baroreflex sensitivity in healthy adults. Am J Physiol Heart Circ Physiol 292(1):H190–H197

Cuadra AE, Shan Z, Sumners C, Raizada MK (2010) A current view of brain renin-angiotensin system: is the (pro)renin receptor the missing link? Pharmacol Ther 125(1):27–38

Li W, Peng H, Cao T, Sato R, McDaniels SJ, Kobori H, Navar LG, Feng Y (2012) Brain-targeted (pro)renin receptor knockdown attenuates angiotensin II-dependent hypertension. Hypertension 59(6):1188–1194

Shan Z, Shi P, Cuadra AE, Dong Y, Lamont GJ, Li Q, Seth DM, Navar LG, Katovich MJ, Sumners C, Raizada MK (2010) Involvement of the brain (pro)renin receptor in cardiovascular homeostasis. Circ Res 107(7):934–938

Huber MJ, Basu R, Cecchettini C, Cuadra AE, Chen QH, Shan Z (2015) Activation of the (pro)renin receptor in the paraventricular nucleus increases sympathetic outflow in anesthetized rats. Am J Physiol Heart Circ Physiol 309(5):H880–H887

Li W, Peng H, Mehaffey EP, Kimball CD, Grobe JL, van Gool JM, Sullivan MN, Earley S, Danser AH, Ichihara A, Feng Y (2014) Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension. Hypertension 63(2):316–323

Li W, Sullivan MN, Zhang S, Worker CJ, Xiong Z, Speth RC, Feng Y (2015) Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension. Hypertension 65(2):352–361

Shi P, Grobe JL, Desland FA, Zhou G, Shen XZ, Shan Z, Liu M, Raizada MK, Sumners C (2014) Direct pro-inflammatory effects of prorenin on microglia. PLoS One 9(10):e92937

Pitra S, Feng Y, Stern JE (2016) Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control. Mol Metab 5(10):858–868

Gironacci MM, Cerniello FM, Longo Carbajosa NA, Goldstein J, Cerrato BD (2014) Protective axis of the renin-angiotensin system in the brain. Clin Sci (Lond) 127(5):295–306

de Souza-Neto FP, Carvalho Santuchi M, de Morais ESM, Campagnole-Santos MJ, da Silva RF (2018) Angiotensin-(1–7) and alamandine on experimental models of hypertension and atherosclerosis. Curr Hypertens Rep 20(2):17

Shangguan W, Shi W, Li G, Wang Y, Li J, Wang X (2017) Angiotensin-(1–7) attenuates atrial tachycardia-induced sympathetic nerve remodeling. J Renin Angiotensin Aldosterone Syst 18(3):1470320317729281

Martins Lima A, Xavier CH, Ferreira AJ, Raizada MK, Wallukat G, Velloso EP, dos Santos RA, Fontes MA (2013) Activation of angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. Am J Physiol Heart Circ Physiol 305(7):H1057–H1067

de Moura MM, dos Santos RA, Campagnole-Santos MJ, Todiras M, Bader M, Alenina N, Haibara AS (2010) Altered cardiovascular reflexes responses in conscious angiotensin-(1–7) receptor Mas-knockout mice. Peptides 31(10):1934–1939

Bilodeau MS, Leiter JC (2018) Angiotensin 1–7 in the rostro-ventrolateral medulla increases blood pressure and splanchnic sympathetic nerve activity in anesthetized rats. Respir Physiol Neurobiol 247:103–111

Ren X, Zhang F, Zhao M, Zhao Z, Sun S, Fraidenburg DR, Tang H, Han Y (2017) Angiotensin-(1–7) in paraventricular nucleus contributes to the enhanced cardiac sympathetic afferent reflex and sympathetic activity in chronic heart failure rats. Cell Physiol Biochem 42(6):2523–2539

Xia H, Lazartigues E (2010) Angiotensin-converting enzyme 2: central regulator for cardiovascular function. Curr Hypertens Rep 12(3):170–175

Shen YH, Chen XR, Yang CX, Liu BX, Li P (2018) Alamandine injected into the paraventricular nucleus increases blood pressure and sympathetic activation in spontaneously hypertensive rats. Peptides 103:98–102

Leenen FH, Ruzicka M, Floras JS (2012) Central sympathetic inhibition by mineralocorticoid receptor but not angiotensin II type 1 receptor blockade: are prescribed doses too low? Hypertension 60(2):278–280

Ferrario CM, Mullick AE (2017) Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res 125(Pt A):57–71

Grassi G (2016) Sympathomodulatory effects of antihypertensive drug treatment. Am J Hypertens 29(6):665–675

Abuissa H, Jones PG, Marso SP, O’Keefe JH Jr (2005) Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol 46(5):821–826

Yang Y, Wei RB, Wang ZC, Wang N, Gao YW, Li MX, Qiu Q (2015) A meta-analysis of the effects of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers on insulin sensitivity in hypertensive patients without diabetes. Diabetes Res Clin Pract 107(3):415–423

Robles NR, Cerezo I, Hernandez-Gallego R (2014) Renin-angiotensin system blocking drugs. J Cardiovasc Pharmacol Ther 19(1):14–33

Benter IF, Yousif MH, Al-Saleh FM, Raghupathy R, Chappell MC, Diz DI (2011) Angiotensin-(1–7) blockade attenuates captopril- or hydralazine-induced cardiovascular protection in spontaneously hypertensive rats treated with NG-nitro-l-arginine methyl ester. J Cardiovasc Pharmacol 57(5):559–567

Kucharewicz I, Pawlak R, Matys T, Pawlak D, Buczko W (2002) Antithrombotic effect of captopril and losartan is mediated by angiotensin-(1–7). Hypertension 40(5):774–779

Yousif MH, Dhaunsi GS, Makki BM, Qabazard BA, Akhtar S, Benter IF (2012) Characterization of angiotensin-(1–7) effects on the cardiovascular system in an experimental model of type-1 diabetes. Pharmacol Res 66(3):269–275

Lang CC, Stein CM, He HB, Wood AJ (1996) Angiotensin converting enzyme inhibition and sympathetic activity in healthy subjects. Clin Pharmacol Ther 59(6):668–674

Azevedo ER, Mak S, Floras JS, Parker JD (2017) Acute effects of angiotensin-converting enzyme inhibition versus angiotensin II receptor blockade on cardiac sympathetic activity in patients with heart failure. Am J Physiol Regul Integr Comp Physiol 313(4):R410–R417

Krum H, Lambert E, Windebank E, Campbell DJ, Esler M (2006) Effect of angiotensin II receptor blockade on autonomic nervous system function in patients with essential hypertension. Am J Physiol Heart Circ Physiol 290(4):H1706–H1712

de Champlain J, Karas M, Assouline L, Nadeau R, LeBlanc AR, Dube B, Larochelle P (2007) Effects of valsartan or amlodipine alone or in combination on plasma catecholamine levels at rest and during standing in hypertensive patients. J Clin Hypertens (Greenwich) 9(3):168–178

Ajayi AA, Reid JL (1988) Renin-angiotensin modulation of sympathetic reflex function in essential hypertension and in the elderly. Int J Clin Pharmacol Res 8(5):327–333

Stupin A, Drenjancevic I, Rasic L, Cosic A, Stupin M (2017) A cross-talk between the renin-angiotensin and adrenergic systems in cardiovascular health and disease. SEEMEDJ 1(1):90–107

Arnold AC, Okamoto LE, Gamboa A, Shibao C, Raj SR, Robertson D, Biaggioni I (2013) Angiotensin II, independent of plasma renin activity, contributes to the hypertension of autonomic failure. Hypertension 61(3):701–706

Cabandugama PK, Gardner MJ, Sowers JR (2017) The renin angiotensin aldosterone system in obesity and hypertension: roles in the cardiorenal metabolic syndrome. Med Clin N Am 101(1):129–137

Engeli S, Bohnke J, Gorzelniak K, Janke J, Schling P, Bader M, Luft FC, Sharma AM (2005) Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45(3):356–362

Masuo K, Mikami H, Ogihara T, Tuck ML (2001) Weight reduction and pharmacologic treatment in obese hypertensives. Am J Hypertens 14(6 Pt 1):530–538

Floras JS, Ponikowski P (2015) The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J 36(30):1974–1982b

Neumann J, Ligtenberg G, Klein IH, Boer P, Oey PL, Koomans HA, Blankestijn PJ (2007) Sympathetic hyperactivity in hypertensive chronic kidney disease patients is reduced during standard treatment. Hypertension 49(3):506–510

Pantzaris ND, Karanikolas E, Tsiotsios K, Velissaris D (2017) Renin inhibition with aliskiren: a decade of clinical experience. J Clin Med 6(6):61

Huang BS, White RA, Bi L, Leenen FH (2012) Central infusion of aliskiren prevents sympathetic hyperactivity and hypertension in Dahl salt-sensitive rats on high salt intake. Am J Physiol Regul Integr Comp Physiol 302(7):R825–R832

Siddiqi L, Oey PL, Blankestijn PJ (2011) Aliskiren reduces sympathetic nerve activity and blood pressure in chronic kidney disease patients. Nephrol Dial Transplant 26(9):2930–2934

Okada Y, Jarvis SS, Best SA, Bivens TB, Adams-Huet B, Levine BD, Fu Q (2013) Chronic renin inhibition lowers blood pressure and reduces upright muscle sympathetic nerve activity in hypertensive seniors. J Physiol 591(23):5913–5922

Jarvis SS, Okada Y, Levine BD, Fu Q (2015) Central integration and neural control of blood pressure during the cold pressor test: a comparison between hydrochlorothiazide and aliskiren. Physiol Rep 3(9):e12502

Fogari R, Zoppi A, Mugellini A, Maffioli P, Lazzari P, Monti C, Derosa G (2011) Effect of aliskiren addition to amlodipine on ankle edema in hypertensive patients: a three-way crossover study. Expert Opin Pharmacother 12(9):1351–1358

Maser RE, Lenhard MJ, Kolm P, Edwards DG (2013) Direct renin inhibition improves parasympathetic function in diabetes. Diabetes Obes Metab 15(1):28–34

Mengal V, Silva PH, Tiradentes RV, Santuzzi CH, de Almeida SA, Sena GC, Bissoli NS, Abreu GR, Gouvea SA (2016) Aliskiren and l-arginine treatments restore depressed baroreflex sensitivity and decrease oxidative stress in renovascular hypertension rats. Hypertens Res 39(11):769–776

DuPont JJ, Hill MA, Bender SB, Jaisser F, Jaffe IZ (2014) Aldosterone and vascular mineralocorticoid receptors: regulators of ion channels beyond the kidney. Hypertension 63(4):632–637

Brown NJ (2003) Eplerenone: cardiovascular protection. Circulation 107(19):2512–2518

Dudenbostel T, Calhoun DA (2017) Use of aldosterone antagonists for treatment of uncontrolled resistant hypertension. Am J Hypertens 30(2):103–109

Arnold AC, Okamoto LE, Gamboa A, Black BK, Raj SR, Elijovich F, Robertson D, Shibao CA, Biaggioni I (2016) Mineralocorticoid receptor activation contributes to the supine hypertension of autonomic failure. Hypertension 67(2):424–429

Lincevicius GS, Shimoura CG, Nishi EE, Perry JC, Casarini DE, Gomes GN, Bergamaschi CT, Campos RR (2015) Aldosterone contributes to sympathoexcitation in renovascular hypertension. Am J Hypertens 28(9):1083–1090

Marques Neto SR, Silva AD, Santos MD, Ferraz EF, Nascimento JH (2013) The blockade of angiotensin AT1 and aldosterone receptors protects rats from synthetic androgen-induced cardiac autonomic dysfunction. Acta Physiol (Oxf) 208(2):166–171

Davies JI, Witham MD, Struthers AD (2005) Autonomic effects of spironolactone and MR blockers in heart failure. Heart Fail Rev 10(1):63–69

Gomez-Sanchez EP (2016) Third-generation mineralocorticoid receptor antagonists: why do we need a fourth? J Cardiovasc Pharmacol 67(1):26–38

Kaplinsky E (2016) Sacubitril/valsartan in heart failure: latest evidence and place in therapy. Ther Adv Chronic Dis 7(6):278–290

Ye L, Wang J, Chen Q, Yang X (2017) LCZ696, a promising novel agent in treating hypertension (a meta-analysis of randomized controlled trials). Oncotarget 8(64):107991–108005

Engeli S, Stinkens R, Heise T, May M, Goossens GH, Blaak EE, Havekes B, Jax T, Albrecht D, Pal P, Tegtbur U, Haufe S, Langenickel TH, Jordan J (2018) Effect of sacubitril/valsartan on exercise-induced lipid metabolism in patients with obesity and hypertension. Hypertension 71(1):70–77

Menendez JT (2016) The mechanism of action of LCZ696. Card Fail Rev 2(1):40–46

Kusaka H, Sueta D, Koibuchi N, Hasegawa Y, Nakagawa T, Lin B, Ogawa H, Kim-Mitsuyama S (2015) LCZ696, angiotensin II receptor-neprilysin inhibitor, ameliorates high-salt-induced hypertension and cardiovascular injury more than valsartan alone. Am J Hypertens 28(12):1409–1417

Ferrario CM, Martell N, Yunis C, Flack JM, Chappell MC, Brosnihan KB, Dean RH, Fernandez A, Novikov SV, Pinillas C, Luque M (1998) Characterization of angiotensin-(1–7) in the urine of normal and essential hypertensive subjects. Am J Hypertens 11(2):137–146

Touyz RM, Montezano AC (2018) Angiotensin-(1–7) and vascular function: the clinical context. Hypertension 71(1):68–69

Machado-Silva A, Passos-Silva D, Santos RA, Sinisterra RD (2016) Therapeutic uses for angiotensin-(1–7). Expert Opin Ther Pat 26(6):669–678

Ho JK, Nation DA (2018) Cognitive benefits of angiotensin IV and angiotensin-(1–7): a systematic review of experimental studies. Neurosci Biobehav Rev 92:209–225