The removal of styrene using a dielectric barrier discharge (DBD) reactor and the analysis of the by-products and intermediates
Tóm tắt
As a kind of volatile organic compound, styrene is a typical industrial pollutant with high toxicity and odorous smell. In this study, the removal of malodorous styrene simulation waste gas was carried out in a self-made wire-tube dielectric barrier discharge reactor. The decomposition efficiency of the reaction was investigated under different applied voltages and flow rates. The results showed that nearly 99.6 % of styrene could be removed with a concentration of 3,600 mg/m3 and the applied voltage of 10.8 kV. However, the selectivity of CO2 and CO showed that the mineralization efficiency of styrene was less than 25 %. The by-products of the reaction, including O3, NO
x
and other intermediates, were also detected and analyzed under different applied voltages. The relationships between the applied voltage and the quantity of final product (CO2) and by-products (intermediate organics, NO
x
, O3) were investigated. The reaction mechanism was also described according to the bond energy and the intermediates that formed.
Tài liệu tham khảo
C. Garcia-Diego, J. Cuellar, Chem. Eng. J. 139, 1 (2008)
C.L. Huang, H.Y. Zhang, Z.Y. Sun, Y.F. Zhao, S. Chen, R.T. Tao, Z.M. Liu, J. Colloid Interface Sci. 364, 2 (2011)
R. Rosiah, N.M. Mahmoud, S. Hamdani, Chem. Eng. J. 132, 1–3 (2007)
T.C. Morata, M. Sliwinska-Kowalska, A.C. Johnson, J. Starck, K. Pawlas, E. Zamyslowska-Szmytke, P. Nylen, E. Toppila, E. Krieg, N. Pawlas, D. Prasher, Int. J. Audiol. 50, 10 (2011)
S. Wongvijitsuk, P. Navasumrit, U. Vattanasit, V. Parnlob, M. Ruchirawat, Int. J. Hyg. Environ. Health 214, 2 (2011)
P.E. Russell, B. Ellis, D.M. Abrams, in Land Reclamation: Extending the Boundaries, ed. by H.M. Moore, H.R. Fox, S. Elliott (Swets & Zeitlinger, Lisse, 2003), p. 351
J.G. Bendall, J. Food Prot. 70, 4 (2007)
C.L. Chang, H. Bai, S.J. Lu, Plasma Chem. Plasma Process. 25, 6 (2005)
F. Adam, A. Lqbal, Chem. Eng. J. 160, 2 (2010)
B. Boulinguiez, P. Le Cloirec, Energy Fuels 24, 9 (2010)
X. Wang, X.Q. Jia, J.P. Wen, Chem. Eng. J. 159, 1–3 (2010)
H.M. Lee, M.B. Chang, Plasma Chem. Plasma Process. 23, 3 (2003)
M.B. Chang, S.J. Yu, Environ. Sci. Technol. 35, 8 (2001)
J.H. Niu, A.M. Zhu, C. Shi, L.L. Shi, Z.M. Song, Y. Xu, Chin. J. Catal. 26, 9 (2005)
H.B. Ma, P. Chen, M.L. Zhang, X.Y. Lin, R. Ruan, Plasma Chem. Plasma Process. 22, 2 (2002)
A. Nasonova, D.J. Kim, W.S. Kim, K.S. Kim, Res. Chem. Intermed. 34, 4 (2008)
J. Chen, J.T. Yang, H. Pan, Q.F. Su, Y.M. Liu, Y. Shi, J. Hazard. Mater. 177, 1–3 (2010)
Y.H. Bai, J.R. Chen, X.Y. Li, C.H. Zhang, Rev. Environ. Contam. T (2009). doi:10.1007/978-1-4419-0032-6_4
J. Meichsner, Lect. Notes phys. (2005). doi:10.1007/11360360_5
C.H. Subrahmanyam, M. Magureanu, A. Renken, L. Kiwi-Minsker, Appl. Catal. B 65, 1–2 (2006)
F. Holzer, U. Roland, F.D. Kopinke, Appl. Catal. B 38, 3 (2002)
X.M. Zhang, J.B. Zhu, X.Y. Li, Z. Liu, X.W. Ren, K.P. Yan, IEEE Trans. Plasma Sci. 39, 6 (2011)
Q. Tang, W.J. Jiang, Y. Cheng, S. Lin, T.M. Lim, J. Xiong, Ind. Eng. Chem. Res. 50, 17 (2011)