The remarkable viral portal vertex: structure and a plausible model for mechanism

Current Opinion in Virology - Tập 51 - Trang 65-73 - 2021
Venigalla B Rao1, Andrei Fokine2, Qianglin Fang3
1Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
2Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
3School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China

Tài liệu tham khảo

Dedeo, 2019, Portal protein: the orchestrator of capsid assembly for the dsDNA tailed bacteriophages and herpesviruses, Annu Rev Virol, 6, 141, 10.1146/annurev-virology-092818-015819 Prevelige, 2018, Phage assembly and the special role of the portal protein, Curr Opin Virol, 31, 66, 10.1016/j.coviro.2018.09.004 Tavares, 2018, The bacteriophage head-to-tail interface, Subcell Biochem, 88, 305, 10.1007/978-981-10-8456-0_14 Newcomb, 2005, Involvement of the portal at an early step in herpes simplex virus capsid assembly, J Virol, 79, 10540, 10.1128/JVI.79.16.10540-10546.2005 Fokine, 2014, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage, 4, 10.4161/bact.28281 Murialdo, 1975, Model for arrangement of minor structural proteins in head of bacteriophage lambda, Nature, 257, 815, 10.1038/257815a0 Murialdo, 1978, Head morphogenesis of complex double-stranded deoxyribonucleic acid bacteriophages, Microbiol Rev, 42, 529, 10.1128/mr.42.3.529-576.1978 Muller-Salamin, 1977, Localization of minor protein components of the head of bacteriophage T4, J Virol, 24, 121, 10.1128/jvi.24.1.121-134.1977 Driedonks, 1981, Gene 20 product of bacteriophage T4 its purification and structure, J Mol Biol, 152, 641, 10.1016/0022-2836(81)90121-2 Casjens, 1988, vol 1 Parent, 2018, Breaking symmetry in viral icosahedral capsids as seen through the lenses of X-ray crystallography and cryo-electron microscopy, Viruses, 10, 10.3390/v10020067 Rao, 2015, Mechanisms of DNA packaging by large double-stranded DNA viruses, Annu Rev Virol, 2, 351, 10.1146/annurev-virology-100114-055212 Feiss, 2012, The bacteriophage DNA packaging machine, Adv Exp Med Biol, 726, 489, 10.1007/978-1-4614-0980-9_22 Casjens, 2011, The DNA-packaging nanomotor of tailed bacteriophages, Nat Rev Microbiol, 9, 647, 10.1038/nrmicro2632 Sun, 2010, Genome packaging in viruses, Curr Opin Struct Biol, 20, 114, 10.1016/j.sbi.2009.12.006 Molineux, 2013, Popping the cork: mechanisms of phage genome ejection, Nat Rev Microbiol, 11, 194, 10.1038/nrmicro2988 Bazinet, 1985, The DNA translocating vertex of dsDNA bacteriophage, Annu Rev Microbiol, 39, 109, 10.1146/annurev.mi.39.100185.000545 Trus, 2004, Structure and polymorphism of the UL6 portal protein of herpes simplex virus type 1, J Virol, 78, 12668, 10.1128/JVI.78.22.12668-12671.2004 Pietila, 2013, Structure of the archaeal head-tailed virus HSTV-1 completes the HK97 fold story, Proc Natl Acad Sci U S A, 110, 10604, 10.1073/pnas.1303047110 Atanasova, 2015, Haloarchaeal virus morphotypes, Biochimie, 118, 333, 10.1016/j.biochi.2015.07.002 Sun, 2015, Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution, Nat Commun, 6, 10.1038/ncomms8548 van Driel, 1978, Assembly of bacteriophage T4 head-related strucutres. II. In vitro assembly of prehead-like structures, J Mol Biol, 123, 115, 10.1016/0022-2836(78)90316-9 Black, 2012, Structure, assembly, and DNA packaging of the bacteriophage T4 head, Adv Virus Res, 82, 119, 10.1016/B978-0-12-394621-8.00018-2 Veesler, 2011, A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries, Microbiol Mol Biol Rev, 75, 423, 10.1128/MMBR.00014-11 Fang, 2020, Structural morphing in a symmetry-mismatched viral vertex, Nat Commun, 11, 10.1038/s41467-020-15575-4 Cuervo, 2019, Structures of T7 bacteriophage portal and tail suggest a viral DNA retention and ejection mechanism, Nat Commun, 10, 10.1038/s41467-019-11705-9 Chen, 2020, Structural changes of a bacteriophage upon DNA packaging and maturation, Protein Cell, 11, 374, 10.1007/s13238-020-00715-9 Lebedev, 2007, Structural framework for DNA translocation via the viral portal protein, EMBO J, 26, 1984, 10.1038/sj.emboj.7601643 Bayfield, 2020, Cryo-EM structure in situ reveals a molecular switch that safeguards virus against genome loss, eLife, 9, 10.7554/eLife.55517 Cressiot, 2017, Porphyrin-assisted docking of a thermophage portal protein into lipid bilayers: nanopore engineering and characterization, ACS Nano, 11, 11931, 10.1021/acsnano.7b06980 Bayfield, 2019, Cryo-EM structure and in vitro DNA packaging of a thermophilic virus with supersized T=7 capsids, Proc Natl Acad Sci U S A, 116, 3556, 10.1073/pnas.1813204116 Lokareddy, 2017, Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation, Nat Commun, 8, 10.1038/ncomms14310 Olia, 2011, Three-dimensional structure of a viral genome-delivery portal vertex, Nat Struct Mol Biol, 18, 597, 10.1038/nsmb.2023 Bardy, 2020, Structure and mechanism of DNA delivery of a gene transfer agent, Nat Commun, 11, 10.1038/s41467-020-16669-9 Xu, 2019, Structural assembly of the tailed bacteriophage varphi29, Nat Commun, 10 Simpson, 2000, Structure of the bacteriophage phi29 DNA packaging motor, Nature, 408, 745, 10.1038/35047129 Simpson, 2001, Structure determination of the head-tail connector of bacteriophage phi29, Acta Crystallogr D Biol Crystallogr, 57, 1260, 10.1107/S0907444901010435 Guasch, 2002, Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage phi29 connector particle, J Mol Biol, 315, 663, 10.1006/jmbi.2001.5278 Hrebik, 2019, Structure and genome ejection mechanism of Staphylococcus aureus phage P68, Sci Adv, 5, 10.1126/sciadv.aaw7414 Gong, 2019, DNA-packing portal and capsid-associated tegument complexes in the tumor herpesvirus KSHV, Cell, 178, 1329, 10.1016/j.cell.2019.07.035 Liu, 2019, Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome, Nature, 570, 257, 10.1038/s41586-019-1248-6 Li, 2020, CryoEM structure of the tegumented capsid of Epstein-Barr virus, Cell Res, 30, 873, 10.1038/s41422-020-0363-0 Machon, 2019, Atomic structure of the Epstein-Barr virus portal, Nat Commun, 10, 10.1038/s41467-019-11706-8 Chaban, 2015, Structural rearrangements in the phage head-to-tail interface during assembly and infection, Proc Natl Acad Sci U S A, 112, 7009, 10.1073/pnas.1504039112 Fokine, 2013, The molecular architecture of the bacteriophage T4 neck, J Mol Biol, 425, 1731, 10.1016/j.jmb.2013.02.012 Bedwell, 2017, Targeted mutagenesis of the P22 portal protein reveals the mechanism of signal transmission during DNA packaging, Virology, 505, 127, 10.1016/j.virol.2017.02.019 Casjens, 1992, Bacteriophage P22 portal protein is part of the gauge that regulates packing density of intravirion DNA, J Mol Biol, 224, 1055, 10.1016/0022-2836(92)90469-Z Cuervo, 2007, Structural rearrangements between portal protein subunits are essential for viral DNA translocation, J Biol Chem, 282, 18907, 10.1074/jbc.M701808200 Padilla-Sanchez, 2014, Structure-function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine, J Mol Biol, 426, 1019, 10.1016/j.jmb.2013.10.011 Grimes, 2011, Role of phi29 connector channel loops in late-stage DNA packaging, J Mol Biol, 410, 50, 10.1016/j.jmb.2011.04.070 Lander, 2006, The structure of an infectious P22 virion shows the signal for headful DNA packaging, Science, 312, 1791, 10.1126/science.1127981 Black, 2015, Old, new, and widely true: the bacteriophage T4 DNA packaging mechanism, Virology, 479–480, 650, 10.1016/j.virol.2015.01.015 Ray, 2010, Single-molecule and FRET fluorescence correlation spectroscopy analyses of phage DNA packaging: colocalization of packaged phage T4 DNA ends within the capsid, J Mol Biol, 395, 1102, 10.1016/j.jmb.2009.11.067 Morais, 2012, The dsDNA packaging motor in bacteriophage ϕ29, Adv Exp Med Biol, 726, 511, 10.1007/978-1-4614-0980-9_23 Sun, 2008, The structure of the phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces, Cell, 135, 1251, 10.1016/j.cell.2008.11.015 Ahi, 2016, Components of adenovirus genome packaging, Front Microbiol, 7, 10.3389/fmicb.2016.01503 Yap, 1996, Novel mutants in the 5’ upstream region of the portal protein gene 20 overcome a gp40-dependent prohead assembly block in bacteriophage T4, J Mol Biol, 263, 539, 10.1006/jmbi.1996.0597 Bazinet, 1990, Novel second-site suppression of a cold-sensitive defect in phage P22 procapsid assembly, J Mol Biol, 216, 701, 10.1016/0022-2836(90)90393-Z Quinten, 2012, Membrane interaction of the portal protein gp20 of bacteriophage T4, J Virol, 86, 11107, 10.1128/JVI.01284-12 In “Molecular Biology of Bacteriophage T4’’ (J.M. Karam, ed.), pp. 218-258. ASM Press, Washington, DC. Chen, 2011, Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus, Proc Natl Acad Sci U S A, 108, 1355, 10.1073/pnas.1015739108 Fuller, 1981, Purification of the coat and scaffolding proteins from procapsids of bacteriophage P22, Virology, 112, 529, 10.1016/0042-6822(81)90300-7 In “Molecular Biology of Bacteriophage T4’’ (J.M. Karam, ed.), pp. 209-212. ASM Press, Washington, DC. Woodson, 2021, A viral genome packaging motor transitions between cyclic and helical symmetry to translocate dsDNA, Sci Adv, 7, 10.1126/sciadv.abc1955 Ray, 2009, Portal control of viral prohead expansion and DNA packaging, Virology, 391, 44, 10.1016/j.virol.2009.05.029 Smith, 2001, The bacteriophage straight phi29 portal motor can package DNA against a large internal force, Nature, 413, 748, 10.1038/35099581 Evilevitch, 2003, Osmotic pressure inhibition of DNA ejection from phage, Proc Natl Acad Sci U S A, 100, 9292, 10.1073/pnas.1233721100 Bauer, 2013, Herpes virus genome, the pressure is on, J Am Chem Soc, 135, 11216, 10.1021/ja404008r Liu, 2014, A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills, Cell, 157, 702, 10.1016/j.cell.2014.02.034 Berndsen, 2015, Continuous allosteric regulation of a viral packaging motor by a sensor that detects the density and conformation of packaged DNA, Biophys J, 108, 315, 10.1016/j.bpj.2014.11.3469 Pettersen, 2004, UCSF Chimera—a visualization system for exploratory research and analysis, J Comput Chem, 25, 1605, 10.1002/jcc.20084