The remarkable viral portal vertex: structure and a plausible model for mechanism
Tài liệu tham khảo
Dedeo, 2019, Portal protein: the orchestrator of capsid assembly for the dsDNA tailed bacteriophages and herpesviruses, Annu Rev Virol, 6, 141, 10.1146/annurev-virology-092818-015819
Prevelige, 2018, Phage assembly and the special role of the portal protein, Curr Opin Virol, 31, 66, 10.1016/j.coviro.2018.09.004
Tavares, 2018, The bacteriophage head-to-tail interface, Subcell Biochem, 88, 305, 10.1007/978-981-10-8456-0_14
Newcomb, 2005, Involvement of the portal at an early step in herpes simplex virus capsid assembly, J Virol, 79, 10540, 10.1128/JVI.79.16.10540-10546.2005
Fokine, 2014, Molecular architecture of tailed double-stranded DNA phages, Bacteriophage, 4, 10.4161/bact.28281
Murialdo, 1975, Model for arrangement of minor structural proteins in head of bacteriophage lambda, Nature, 257, 815, 10.1038/257815a0
Murialdo, 1978, Head morphogenesis of complex double-stranded deoxyribonucleic acid bacteriophages, Microbiol Rev, 42, 529, 10.1128/mr.42.3.529-576.1978
Muller-Salamin, 1977, Localization of minor protein components of the head of bacteriophage T4, J Virol, 24, 121, 10.1128/jvi.24.1.121-134.1977
Driedonks, 1981, Gene 20 product of bacteriophage T4 its purification and structure, J Mol Biol, 152, 641, 10.1016/0022-2836(81)90121-2
Casjens, 1988, vol 1
Parent, 2018, Breaking symmetry in viral icosahedral capsids as seen through the lenses of X-ray crystallography and cryo-electron microscopy, Viruses, 10, 10.3390/v10020067
Rao, 2015, Mechanisms of DNA packaging by large double-stranded DNA viruses, Annu Rev Virol, 2, 351, 10.1146/annurev-virology-100114-055212
Feiss, 2012, The bacteriophage DNA packaging machine, Adv Exp Med Biol, 726, 489, 10.1007/978-1-4614-0980-9_22
Casjens, 2011, The DNA-packaging nanomotor of tailed bacteriophages, Nat Rev Microbiol, 9, 647, 10.1038/nrmicro2632
Sun, 2010, Genome packaging in viruses, Curr Opin Struct Biol, 20, 114, 10.1016/j.sbi.2009.12.006
Molineux, 2013, Popping the cork: mechanisms of phage genome ejection, Nat Rev Microbiol, 11, 194, 10.1038/nrmicro2988
Bazinet, 1985, The DNA translocating vertex of dsDNA bacteriophage, Annu Rev Microbiol, 39, 109, 10.1146/annurev.mi.39.100185.000545
Trus, 2004, Structure and polymorphism of the UL6 portal protein of herpes simplex virus type 1, J Virol, 78, 12668, 10.1128/JVI.78.22.12668-12671.2004
Pietila, 2013, Structure of the archaeal head-tailed virus HSTV-1 completes the HK97 fold story, Proc Natl Acad Sci U S A, 110, 10604, 10.1073/pnas.1303047110
Atanasova, 2015, Haloarchaeal virus morphotypes, Biochimie, 118, 333, 10.1016/j.biochi.2015.07.002
Sun, 2015, Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution, Nat Commun, 6, 10.1038/ncomms8548
van Driel, 1978, Assembly of bacteriophage T4 head-related strucutres. II. In vitro assembly of prehead-like structures, J Mol Biol, 123, 115, 10.1016/0022-2836(78)90316-9
Black, 2012, Structure, assembly, and DNA packaging of the bacteriophage T4 head, Adv Virus Res, 82, 119, 10.1016/B978-0-12-394621-8.00018-2
Veesler, 2011, A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries, Microbiol Mol Biol Rev, 75, 423, 10.1128/MMBR.00014-11
Fang, 2020, Structural morphing in a symmetry-mismatched viral vertex, Nat Commun, 11, 10.1038/s41467-020-15575-4
Cuervo, 2019, Structures of T7 bacteriophage portal and tail suggest a viral DNA retention and ejection mechanism, Nat Commun, 10, 10.1038/s41467-019-11705-9
Chen, 2020, Structural changes of a bacteriophage upon DNA packaging and maturation, Protein Cell, 11, 374, 10.1007/s13238-020-00715-9
Lebedev, 2007, Structural framework for DNA translocation via the viral portal protein, EMBO J, 26, 1984, 10.1038/sj.emboj.7601643
Bayfield, 2020, Cryo-EM structure in situ reveals a molecular switch that safeguards virus against genome loss, eLife, 9, 10.7554/eLife.55517
Cressiot, 2017, Porphyrin-assisted docking of a thermophage portal protein into lipid bilayers: nanopore engineering and characterization, ACS Nano, 11, 11931, 10.1021/acsnano.7b06980
Bayfield, 2019, Cryo-EM structure and in vitro DNA packaging of a thermophilic virus with supersized T=7 capsids, Proc Natl Acad Sci U S A, 116, 3556, 10.1073/pnas.1813204116
Lokareddy, 2017, Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation, Nat Commun, 8, 10.1038/ncomms14310
Olia, 2011, Three-dimensional structure of a viral genome-delivery portal vertex, Nat Struct Mol Biol, 18, 597, 10.1038/nsmb.2023
Bardy, 2020, Structure and mechanism of DNA delivery of a gene transfer agent, Nat Commun, 11, 10.1038/s41467-020-16669-9
Xu, 2019, Structural assembly of the tailed bacteriophage varphi29, Nat Commun, 10
Simpson, 2000, Structure of the bacteriophage phi29 DNA packaging motor, Nature, 408, 745, 10.1038/35047129
Simpson, 2001, Structure determination of the head-tail connector of bacteriophage phi29, Acta Crystallogr D Biol Crystallogr, 57, 1260, 10.1107/S0907444901010435
Guasch, 2002, Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage phi29 connector particle, J Mol Biol, 315, 663, 10.1006/jmbi.2001.5278
Hrebik, 2019, Structure and genome ejection mechanism of Staphylococcus aureus phage P68, Sci Adv, 5, 10.1126/sciadv.aaw7414
Gong, 2019, DNA-packing portal and capsid-associated tegument complexes in the tumor herpesvirus KSHV, Cell, 178, 1329, 10.1016/j.cell.2019.07.035
Liu, 2019, Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome, Nature, 570, 257, 10.1038/s41586-019-1248-6
Li, 2020, CryoEM structure of the tegumented capsid of Epstein-Barr virus, Cell Res, 30, 873, 10.1038/s41422-020-0363-0
Machon, 2019, Atomic structure of the Epstein-Barr virus portal, Nat Commun, 10, 10.1038/s41467-019-11706-8
Chaban, 2015, Structural rearrangements in the phage head-to-tail interface during assembly and infection, Proc Natl Acad Sci U S A, 112, 7009, 10.1073/pnas.1504039112
Fokine, 2013, The molecular architecture of the bacteriophage T4 neck, J Mol Biol, 425, 1731, 10.1016/j.jmb.2013.02.012
Bedwell, 2017, Targeted mutagenesis of the P22 portal protein reveals the mechanism of signal transmission during DNA packaging, Virology, 505, 127, 10.1016/j.virol.2017.02.019
Casjens, 1992, Bacteriophage P22 portal protein is part of the gauge that regulates packing density of intravirion DNA, J Mol Biol, 224, 1055, 10.1016/0022-2836(92)90469-Z
Cuervo, 2007, Structural rearrangements between portal protein subunits are essential for viral DNA translocation, J Biol Chem, 282, 18907, 10.1074/jbc.M701808200
Padilla-Sanchez, 2014, Structure-function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine, J Mol Biol, 426, 1019, 10.1016/j.jmb.2013.10.011
Grimes, 2011, Role of phi29 connector channel loops in late-stage DNA packaging, J Mol Biol, 410, 50, 10.1016/j.jmb.2011.04.070
Lander, 2006, The structure of an infectious P22 virion shows the signal for headful DNA packaging, Science, 312, 1791, 10.1126/science.1127981
Black, 2015, Old, new, and widely true: the bacteriophage T4 DNA packaging mechanism, Virology, 479–480, 650, 10.1016/j.virol.2015.01.015
Ray, 2010, Single-molecule and FRET fluorescence correlation spectroscopy analyses of phage DNA packaging: colocalization of packaged phage T4 DNA ends within the capsid, J Mol Biol, 395, 1102, 10.1016/j.jmb.2009.11.067
Morais, 2012, The dsDNA packaging motor in bacteriophage ϕ29, Adv Exp Med Biol, 726, 511, 10.1007/978-1-4614-0980-9_23
Sun, 2008, The structure of the phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces, Cell, 135, 1251, 10.1016/j.cell.2008.11.015
Ahi, 2016, Components of adenovirus genome packaging, Front Microbiol, 7, 10.3389/fmicb.2016.01503
Yap, 1996, Novel mutants in the 5’ upstream region of the portal protein gene 20 overcome a gp40-dependent prohead assembly block in bacteriophage T4, J Mol Biol, 263, 539, 10.1006/jmbi.1996.0597
Bazinet, 1990, Novel second-site suppression of a cold-sensitive defect in phage P22 procapsid assembly, J Mol Biol, 216, 701, 10.1016/0022-2836(90)90393-Z
Quinten, 2012, Membrane interaction of the portal protein gp20 of bacteriophage T4, J Virol, 86, 11107, 10.1128/JVI.01284-12
In “Molecular Biology of Bacteriophage T4’’ (J.M. Karam, ed.), pp. 218-258. ASM Press, Washington, DC.
Chen, 2011, Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus, Proc Natl Acad Sci U S A, 108, 1355, 10.1073/pnas.1015739108
Fuller, 1981, Purification of the coat and scaffolding proteins from procapsids of bacteriophage P22, Virology, 112, 529, 10.1016/0042-6822(81)90300-7
In “Molecular Biology of Bacteriophage T4’’ (J.M. Karam, ed.), pp. 209-212. ASM Press, Washington, DC.
Woodson, 2021, A viral genome packaging motor transitions between cyclic and helical symmetry to translocate dsDNA, Sci Adv, 7, 10.1126/sciadv.abc1955
Ray, 2009, Portal control of viral prohead expansion and DNA packaging, Virology, 391, 44, 10.1016/j.virol.2009.05.029
Smith, 2001, The bacteriophage straight phi29 portal motor can package DNA against a large internal force, Nature, 413, 748, 10.1038/35099581
Evilevitch, 2003, Osmotic pressure inhibition of DNA ejection from phage, Proc Natl Acad Sci U S A, 100, 9292, 10.1073/pnas.1233721100
Bauer, 2013, Herpes virus genome, the pressure is on, J Am Chem Soc, 135, 11216, 10.1021/ja404008r
Liu, 2014, A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills, Cell, 157, 702, 10.1016/j.cell.2014.02.034
Berndsen, 2015, Continuous allosteric regulation of a viral packaging motor by a sensor that detects the density and conformation of packaged DNA, Biophys J, 108, 315, 10.1016/j.bpj.2014.11.3469
Pettersen, 2004, UCSF Chimera—a visualization system for exploratory research and analysis, J Comput Chem, 25, 1605, 10.1002/jcc.20084