The remarkable Re–Os chronometer in molybdenite: how and why it works

Terra Nova - Tập 13 Số 6 - Trang 479-486 - 2001
Holly J. Stein1, R. J. Markey1, J. W. Morgan1, Judith L. Hannah1, Anders Scherstén1
1AIRIE Program, Department of Earth Resources, Colorado State University, Fort Collins, CO 80523-1482, USA

Tóm tắt

The Re–Os (rhenium–osmium) chronometer applied to molybdenite (MoS2) is now demonstrated to be remarkably robust, surviving intense deformation and high‐grade thermal metamorphism. Successful dating of molybdenite is dependent on proper preparation of the mineral separate and analysis of a critical quantity of molybdenite, unique to each sample, such that recognized spatial decoupling of 187Re parent and 187Os daughter within individual molybdenite crystals is overcome. Highly precise, accurate and reproducible age results are derived through isotope dilution and negative thermal ion mass spectrometry (ID‐NTIMS). Spatial decoupling of parent–daughter precludes use of the laser ablation ICP‐MS microanalytical technique for Re–Os dating of molybdenite. The use of a reference or control sample is necessary to establish laboratory credibility and for interlaboratory comparisons. The Rb–Sr, K–Ar and 40Ar/39Ar chronometers are susceptible to chemical and thermal disturbance, particularly in terranes that have experienced subsequent episodes of hydrothermal/magmatic activity, and therefore should not be used as a basis for establishing accuracy in Re–Os dating of molybdenite, as has been done in the past. Re–Os ages for molybdenite are almost always in agreement with observed geological relationships and, when available, with zircon and titanite U–Pb ages. For terranes experiencing multiple episodes of metamorphism and deformation, molybdenite is not complicated by overgrowths as is common for some minerals used in U–Pb dating (e.g. zircon, monazite, xenotime), nor are Re and Os mobilized beyond the margins of individual crystals during solid‐state recrystallization. Moreover, inheritance of older molybdenite cores, incorporation of common Os, and radiogenic Os loss are exceedingly rare, whereas inheritance, common Pb and Pb loss are common complications in U–Pb dating techniques. Therefore, molybdenite ages may serve as point‐in‐time markers for age comparisons.

Từ khóa


Tài liệu tham khảo

Arne D.C., 2001, Re–Os dating of sulfides associated with gold mineralization in Central Victoria, Australia, Econ. Geol, 96, 1455, 10.2113/gsecongeo.96.6.1455

10.1080/00167617408728850

10.1016/S0016-7037(00)00512-3

Belyatsky B.V. Bogatchev B.A. Golubev A.I. Ivannikov V.V. Levtchenkov O.A.andPhilippov N.B. 2000.New U‐Pb and Sm‐Nd data on ages of Archaean and Palaeoproterozoic magmatic complexes of Karelia. In:All‐Russian Conference `General Issues of Precambrian Subdivision'. Abstract volume Apatity Kola Science Centre(T.F. Negrutza and V.Z. Negrutza eds) pp. 42–45.

Bingen B., 2001, Re‐Os dating of the Ørsdalen W‐Mo district in Rogaland, S Norway, and its relationship to Sveconorwegian high‐grade metamorphism, Ilmenite Deposits in the Rogaland Anorthosite Province, S. Norway. NGU Report No 2001, 042, 15

10.1007/s004100050428

10.1016/S0016-7037(98)00225-7

10.1130/0091-7613(2000)28<419:UDOPAR>2.0.CO;2

Giles D.L.andSchilling J.H. 1972.Variation in rhenium content of molybdenite.International Geological Congress 24th session section 10 Montreal pp. 145–152. IGC.

Gorelov V.A. Larin A.M.andTurchenko S.I. 1997.Karelia Terrain (Chapter 2). In:Precambrian Ore Deposits of the East European and Siberian Cratons. Developments in Economic Geology 30(D.V. Rundqvist and C. Gillen eds) pp. 67–70. Elsevier Amsterdam.

10.1046/j.1525-1314.2000.00267.x

10.1007/s004100050475

10.1046/j.1525-1314.2000.00266.x

10.2343/geochemj.23.85

Kosler J. Cox R. Sylvester P. Wilton D. Stein H.andScherstén A. 2000.Laser ablation ICP‐MS analysis of molybdenite – implications for Re‐Os geochronology.Goldschmidt Conference September 3–8 Oxford England.Cambridge Publications Oxford UK.

10.1046/j.1525-1314.2000.00255.x

Ludwig K.R. 1999.Isoplot/Ex Version 2.0: a geochronological toolkit for Microsoft Excel. Geochronology Center Berkeley. Special Publication 1a.

10.1016/S0039-9140(97)00198-7

10.1126/science.261.5126.1282

10.1016/0016-7037(93)90176-W

10.1046/j.1525-1314.2000.00261.x

10.1016/0016-7037(95)00109-D

10.1007/s001260050251

Ovchinnikova G.V. Larin A.M. Neymark L.A. Gorochovsky B.M.andSergeyeva N.A. 1995.Pb‐isotopic constraints on the origin of the Lobash Mo‐porphyry deposit E. Karelia Russia. In:Precambrian of Europe: Stratigraphy Structure Evolution and Mineralization(V.A. Glebovitsky and A.B. Kotov eds). pp. 83–84. Russian Academy of Sciences.

10.1016/0016-7037(63)90079-6

10.1016/0012-821X(96)00068-4

Pokalov V.T., 1993, Lobash – the first large molybdenum deposit of the Precambrian age (Karelia), Geol. Ore Deposits (Translated from Geologiya Rudnykh Mestorozhkinii), 35, 234

10.1016/S0012-821X(01)00264-3

10.1016/S0012-821X(97)00202-1

10.1007/s001260050276

10.1093/petrology/42.11.2015

Santosh M., 1994, Re‐Os dating of molybdenites from southern India: implication for Pan‐African metallogeny, J. Geol. Soc. India, 43, 585

10.1016/S0016-7037(01)00616-0

10.2113/96.1.197

10.1126/science.271.5252.1099

10.2113/gsecongeo.92.7-8.827

Stein H., 2001, Re‐Os dating of Boddington molybdenites, SW Yilgarn: two Au mineralization events, AGSO-Geoscience Australia, Record, 2001, 469

Stein H.J., 1998, An introduction to Re–Os: What's in it for the mineral industry?, SEG Newsletter, 32, 1

Stein H.J., 1999, Re–Os age for the Hemlo Au deposit, Ontario, Canada: durability of the Re‐Os chronometer, EOS, Trans., Am. Geophys. Union, 80, F1082

10.2113/95.8.1657

10.1007/s001260050153

10.1016/S0016-7037(99)00291-4

10.1039/an9921701151

10.2343/geochemj.35.29

10.2183/pjab.69.79

10.1016/0016-7037(96)00164-0

10.2113/95.5.1165

10.1046/j.1365-3121.1998.00156.x

10.1007/s004100100239

10.2113/95.7.1537

10.1016/0012-821X(95)00237-7