The regulation of immunoglobulin E class-switch recombination
Tóm tắt
Từ khóa
Tài liệu tham khảo
Oettgen, H. C. & Geha, R. S. IgE regulation and roles in asthma pathogenesis. J. Allergy Clin. Immunol. 107, 429–440 (2001).
Gauchat, J. F., Lebman, D. A., Coffman, R. L., Gascan, H. & de Vries, J. E. Structure and expression of germline ε transcripts in human B cells induced by interleukin 4 to switch to IgE production. J. Exp. Med. 172, 463–473 (1990).
Jung, S., Rajewsky, K. & Radbruch, A. Shutdown of class switch recombination by deletion of a switch region control element. Science 259, 984–987 (1993).
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000). The authors report the first activation-induced cytidine deaminase (AID)-deficient mice and show the importance of AID in class-switch recombination (CSR) and somatic hypermutation of immunoglobulin variable regions.
Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).
Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).
Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003). The first evidence to show that, in vitro , AID deaminates single-stranded DNA but not double-stranded DNA (dsDNA), and that dsDNA can only be deaminated if the reaction is coupled with transcription.
Stutz, A. M. & Woisetschlager, M. Functional synergism of STAT6 with either NF-κB or PU.1 to mediate IL-4-induced activation of IgE germline gene transcription. J. Immunol. 163, 4383–4391 (1999).
Thienes, C. P. et al. The transcription factor B cell-specific activator protein (BSAP) enhances both IL-4- and CD40-mediated activation of the human ε germline promoter. J. Immunol. 158, 5874–5882 (1997).
Delphin, S. & Stavnezer, J. Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germline ε promoter: regulation by NF-IL-4, a C/EBP family member and NF-κB/p50. J. Exp. Med. 181, 181–192 (1995).
Mao, C. S. & Stavnezer, J. Differential regulation of mouse germline Igγ1 and ε promoters by IL-4 and CD40. J. Immunol. 167, 1522–1534 (2001).
Sugai, M. et al. Essential role of Id2 in negative regulation of IgE class switching. Nature Immunol. 4, 25–30 (2003). The first paper to show that transforming growth factor-β1 (TGF-β1)-mediated induction of inhibitor of DNA binding 2 (ID2) is responsible for suppressing the production of IgE.
de Vries, J. E., Punnonen, J., Cocks, B. G., de Waal Malefyt, R. & Aversa, G. Regulation of the human IgE response by IL-4 and IL-13. Res. Immunol. 144, 597–601 (1993).
Grewal, I. S. & Flavell, R. A. The role of CD40 ligand in costimulation and T-cell activation. Immunol. Rev. 153, 85–106 (1996).
Monticelli, S., De Monte, L. & Vercelli, D. Molecular regulation of IgE switching: let's walk hand in hand. Allergy 53, 6–8 (1998).
Sha, W. C., Liou, H. C., Tuomanen, E. I. & Baltimore, D. Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell 80, 321–330 (1995).
Chen, C. L. et al. RAG2−/−, I κβ-α−/− chimeras display a psoriasiform skin disease. J. Invest. Dermatol. 115, 1124–1133 (2000).
Qiu, G. & Stavnezer, J. Overexpression of BSAP/Pax-5 inhibits switching to IgA and enhances switching to IgE in the I.29 μ B cell line. J. Immunol. 161, 2906–2918 (1998).
Messner, B., Stutz, A. M., Albrecht, B., Peiritsch, S. & Woisetschlager, M. Cooperation of binding sites for STAT6 and NF-κB/rel in the IL-4-induced up-regulation of the human IgE germline promoter. J. Immunol. 159, 3330–3337 (1997). The authors show that ligation of CD40 increases the production of Cε germline transcripts through the binding of nuclear factor-κB (NF-κB)–REL to two tandem NF-κB sites in the Cε germline promoter.
Cheng, G. et al. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science 267, 1494–1498 (1995).
Ishida, T. et al. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J. Biol. Chem. 271, 28745–28748 (1996).
Ishida, T. K. et al. TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. Proc. Natl Acad. Sci. USA 93, 9437–9442 (1996).
Pullen, S. S. et al. High-affinity interactions of tumor necrosis factor receptor-associated factors (TRAFs) and CD40 require TRAF trimerization and CD40 multimerization. Biochemistry 38, 10168–10177 (1999).
Hostager, B. S., Catlett, I. M. & Bishop, G. A. Recruitment of CD40 and tumor necrosis factor receptor-associated factors 2 and 3 to membrane microdomains during CD40 signaling. J. Biol. Chem. 275, 15392–1538 (2000).
Iciek, L. A., Delphin, S. A. & Stavnezer, J. CD40 cross-linking induces Igε germline transcripts in B cells via activation of NF-κB: synergy with IL-4 induction. J. Immunol. 158, 4769–4779 (1997).
Basaki, Y., Ikizawa, K., Kajiwara, K. & Yanagihara, Y. CD40-mediated tumor necrosis factor receptor-associated factor 3 signaling upregulates IL-4-induced germline Cε transcription in a human B cell line. Arch. Biochem. Biophys. 405, 199–204 (2002).
Ahonen, C. et al. The CD40–TRAF6 axis controls affinity maturation and the generation of long-lived plasma cells. Nature Immunol. 3, 451–456 (2002).
Jabara, H. et al. The binding site for TRAF2 and TRAF3 but not for TRAF6 is essential for CD40-mediated immunoglobulin class switching. Immunity 17, 265–276 (2002). This paper show that disruption of the binding of tumour-necrosis factor (TNF)-receptor-associated factor 2 (TRAF2) and TRAF3 to CD40 blocks CD40-mediated isotype switching and activation of primary mouse B cells. See also reference 27.
Faris, M., Gaskin, F., Geha, R. S. & Fu, S. M. Tyrosine phosphorylation defines a unique transduction pathway in human B cells mediated via CD40. Trans. Assoc. Am. Physicians 106, 187–195 (1993).
Ren, C. L., Morio, T., Fu, S. M. & Geha, R. S. Signal transduction via CD40 involves activation of lyn kinase and phosphatidylinositol-3-kinase, and phosphorylation of phospholipase Cγ 2. J. Exp. Med. 179, 673–680 (1994).
Zhang, K. et al. CD40-mediated p38 mitogen-activated protein kinase activation is required for immunoglobulin class switch recombination to IgE. J. Allergy Clin. Immunol. 110, 421–428 (2002).
Jabara, H. H., Ahern, D. J., Vercelli, D. & Geha, R. S. Hydrocortisone and IL-4 induce IgE isotype switching in human B cells. J. Immunol. 147, 1557–1560 (1991).
Jabara, H. H., Brodeur, S. R. & Geha, R. S. Glucocorticoids upregulate CD40 ligand expression and induce CD40L-dependent immunoglobulin isotype switching. J. Clin. Invest. 107, 371–378 (2001).
Beato, M., Herrlich, P. & Schutz, G. Steroid hormone receptors: many actors in search of a plot. Cell 83, 851–857 (1995).
Litinskiy, M. B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nature Immunol. 3, 822–829 (2002). This paper shows a new CD40-independent pathway for IgE CSR that is induced by BLYS (B-lymphocyte stimulator) and APRIL — new members of the TNF family — in interleukin-4 (IL-4)-stimulated B cells.
Marsters, S. A. et al. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr. Biol. 10, 785–788 (2000).
Yan, M. et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr. Biol. 11, 1547–1552 (2001).
Hatzoglou, A. et al. TNF receptor family member BCMA (B cell maturation) associates with TNF receptor-associated factor (TRAF) 1, TRAF2, and TRAF3 and activates NF-κB, elk-1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. J. Immunol. 165, 1322–1330 (2000).
von Bulow, G. U. et al. Molecular cloning and functional characterization of murine transmembrane activator and CAML interactor (TACI) with chromosomal localization in human and mouse. Mamm. Genome 11, 628–632 (2000).
Xia, X. Z. et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J. Exp. Med. 192, 137–143 (2000).
Claudio, E., Brown, K., Park, S., Wang, H. & Siebenlist, U. BAFF-induced NEMO-independent processing of NF-κB2 in maturing B cells. Nature Immunol. 3, 958–965 (2002).
Jabara, H. H. et al. Induction of germ-line and mature Cε transcripts in human B cells stimulated with rIL-4 and EBV. J. Immunol. 145, 3468–3473 (1990).
Uchida, J. et al. Mimicry of CD40 signals by Epstein–Barr virus LMP1 in B lymphocyte responses. Science 286, 300–303 (1999).
Brodeur, S. R., Cheng, G., Baltimore, D. & Thorley-Lawson, D. A. Localization of the major NF-κB-activating site and the sole TRAF3 binding site of LMP-1 defines two distinct signaling motifs. J. Biol. Chem. 272, 19777–19784 (1997).
Fries, K. L., Miller, W. E. & Raab-Traub, N. The A20 protein interacts with the Epstein–Barr virus latent membrane protein 1 (LMP1) and alters the LMP1–TRAF1–TRADD complex. Virology 264, 159–166 (1999).
Kieser, A., Kaiser, C. & Hammerschmidt, W. LMP1 signal transduction differs substantially from TNF receptor 1 signaling in the molecular functions of TRADD and TRAF2. EMBO J. 18, 2511–2521 (1999).
Kusada-Funakoshi, M., Sasaki, J., Takada, Y., Soji, T. & Arakawa, K. Evidence that C4b-binding protein (proline-rich protein) is synthesized by hepatocytes. Biochem. Med. Metab. Biol. 45, 350–354 (1991).
Lappin, D. F., Birnie, G. D. & Whaley, K. Modulation by interferons of the expression of monocyte complement genes. Biochem. J. 268, 387–392 (1990).
Moffat, G. J., Vik, D. P., Noack, D. & Tack, B. F. Complete structure of the murine C4b-binding protein gene and regulation of its expression by dexamethasone. J. Biol. Chem. 267, 20400–20406 (1992).
Moffat, G. J. & Tack, B. F. Regulation of C4b-binding protein gene expression by the acute-phase mediators tumor necrosis factor-α, interleukin-6, and interleukin-1. Biochemistry 31, 12376–12384 (1992).
Blom, A. M., Kask, L. & Dahlback, B. CCP1–4 of the C4b-binding protein α-chain are required for factor I mediated cleavage of complement factor C3b. Mol. Immunol . 39, 547–556 (2003).
Brodeur, S. R. et al. C4b-binding protein (C4BP) activates B cells through the CD40 receptor. Immunity 18, 837–848 (2003). The first paper showing complement component 4 binding protein (C4BP) to be an inducer of B-cell activation and IL-4-dependent IgE class switching.
Xu, L. & Rothman, P. IFN-γ represses ε germline transcription and subsequently down-regulates switch recombination to ε. Int. Immunol. 6, 515–521 (1994).
Parrish-Novak, J., Foster, D. C., Holly, R. D. & Clegg, C. H. Interleukin-21 and the IL-21 receptor: novel effectors of NK and T cell responses. J. Leukoc. Biol. 72, 856–863 (2002).
Ozaki, K. et al. A critical role for IL-21 in regulating immunoglobulin production. Science 298, 1630–1634 (2002).
Suto, A. et al. Interleukin 21 prevents antigen-induced IgE production by inhibiting germ line Cε transcription of IL-4-stimulated B cells. Blood 100, 4565–4573 (2002).
Gracie, J. A., Robertson, S. E. & McInnes, I. B. Interleukin-18. J. Leukoc. Biol. 73, 213–224 (2003).
Hoshino, T., Yagita, H., Ortaldo, J. R., Wiltrout, R. H. & Young, H. A. In vivo administration of IL-18 can induce IgE production through TH2 cytokine induction and up-regulation of CD40 ligand (CD154) expression on CD4+ T cells. Eur. J. Immunol. 30, 1998–2006 (2000).
Hoshino, T. et al. Cutting edge: IL-18-transgenic mice: in vivo evidence of a broad role for IL-18 in modulating immune function. J. Immunol. 166, 7014–7018 (2001).
Rush, J. S., Hasbold, J. & Hodgkin, P. D. Cross-linking surface Ig delays CD40 ligand- and IL-4-induced B cell Ig class switching and reveals evidence for independent regulation of B cell proliferation and differentiation. J. Immunol. 168, 2676–2682 (2002).
Yamada, T., Zhu, D., Saxon, A. & Zhang, K. CD45 controls interleukin-4-mediated IgE class switch recombination in human B cells through its function as a Janus kinase phosphatase. J. Biol. Chem. 277, 28830–28835 (2002).
Zhou, C., Saxon, A. & Zhang, K. Human activation-induced cytidine deaminase is induced by IL-4 and negatively regulated by CD45: implication of CD45 as a Janus kinase phosphatase in antibody diversification. J. Immunol. 170, 1887–1893 (2003).
Arimura, Y. et al. CD45 is required for CD40-induced inhibition of DNA synthesis and regulation of c-Jun NH2-terminal kinase and p38 in BAL-17 B cells. J. Biol. Chem. 276, 8550–8556 (2001).
Loh, R. K. et al. Role of protein tyrosine kinases and phosphatases in isotype switching: crosslinking CD45 to CD40 inhibits IgE isotype switching in human B cells. Immunol. Lett. 45, 99–106 (1995).
Pioli, C., Gatta, L., Ubaldi, V. & Doria, G. Inhibition of IgG1 and IgE production by stimulation of the B cell CTLA-4 receptor. J. Immunol. 165, 5530–5536 (2000).
Sherr, E., Macy, E., Kimata, H., Gilly, M. & Saxon, A. Binding the low affinity FcεR on B cells suppresses ongoing human IgE synthesis. J. Immunol. 142, 481–489 (1989).
Yu, P., Kosco-Vilbois, M., Richards, M., Kohler, G. & Lamers, M. C. Negative feedback regulation of IgE synthesis by murine CD23. Nature 369, 753–756 (1994).
Payet, M. & Conrad, D. H. IgE regulation in CD23 knockout and transgenic mice. Allergy 54, 1125–1129 (1999).
Saxon, A., Ke, Z., Bahati, L. & Stevens, R. H. Soluble CD23 containing B cell supernatants induce IgE from peripheral blood B-lymphocytes and costimulate with interleukin-4 in induction of IgE. J. Allergy Clin. Immunol. 86, 333–344 (1990).
Christie, G. et al. IgE secretion is attenuated by an inhibitor of proteolytic processing of CD23 (FcεRII). Eur. J. Immunol. 27, 3228–3235 (1997).
Schulz, O. et al. Cleavage of the low-affinity receptor for human IgE (CD23) by a mite cysteine protease: nature of the cleaved fragment in relation to the structure and function of CD23. Eur. J. Immunol. 27, 584–588 (1997).
Gough, L., Schulz, O., Sewell, H. F. & Shakib, F. The cysteine protease activity of the major dust mite allergen Derp1 selectively enhances the immunoglobulin E antibody response. J. Exp. Med. 190, 1897–1902 (1999).
Mayer, R. J. et al. Inhibition of CD23 processing correlates with inhibition of IL-4-stimulated IgE production in human PBL and hu-PBL-reconstituted SCID mice. Clin. Exp. Allergy 30, 719–727 (2000).
Harris, M. B. et al. Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of Iε transcription and immunoglobulin E switching. Mol. Cell. Biol. 19, 7264–7275 (1999). This paper shows that the B-cell lymphoma 6 (BCL6) inhibitory effect on IL-4-induced IgE production is due to its binding to the signal transducer and activator of transcription 6 (STAT6) site in the Iε promoter.
Dent, A. L., Shaffer, A. L., Yu, X., Allman, D. & Staudt, L. M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).
Ishiguro, A. et al. Expression of Id2 and Id3 mRNA in human lymphocytes. Leuk. Res. 19, 989–996 (1995).
Becker-Herman, S., Lantner, F. & Shachar, I. Id2 negatively regulates B cell differentiation in the spleen. J. Immunol. 168, 5507–5513 (2002).
Wilson, R. B. et al. Repression of immunoglobulin enhancers by the helix–loop–helix protein Id: implications for B-lymphoid-cell development. Mol. Cell. Biol. 11, 6185–6191 (1991).
Sun, X. H., Copeland, N. G., Jenkins, N. A. & Baltimore, D. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol. Cell. Biol. 11, 5603–5611 (1991).
Kusunoki, T. et al. TH2 dominance and defective development of a CD8+ dendritic cell subset in Id2-deficient mice. J. Allergy Clin. Immunol. 111, 136–142 (2003).
Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent TH2 development and commitment. Immunity 12, 27–37 (2000).
Usui, T., Nishikomori, R., Kitani, A. & Strober, W. GATA-3 suppresses TH1 development by downregulation of Stat4 and not through effects on IL-12Rβ2 chain or T-bet. Immunity 18, 415–428 (2003).
Robinson, D. S. & Lloyd, C. M. Asthma: T-bet — a master controller? Curr. Biol. 12, R322–R324 (2002).
Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).
Ranger, A. M., Oukka, M., Rengarajan, J. & Glimcher, L. H. Inhibitory function of two NFAT family members in lymphoid homeostasis and TH2 development. Immunity 9, 627–635 (1998).
Viola, J. P., Kiani, A., Bozza, P. T. & Rao, A. Regulation of allergic inflammation and eosinophil recruitment in mice lacking the transcription factor NFAT1: role of interleukin-4 (IL-4) and IL-5. Blood 91, 2223–2230 (1998).
Shirakawa, I. et al. Atopy and asthma: genetic variants of IL-4 and IL-13 signalling. Immunol. Today 21, 60–64 (2000).
Marsh, D. G. et al. Linkage analysis of IL4 and other chromosome 5q31. 1 markers and total serum immunoglobulin E concentrations. Science 264, 1152–1156 (1994).
Rosenwasser, L. J. Genetics of atopy and asthma: promoter-based candidate gene studies for IL-4. Int. Arch. Allergy Immunol. 113, 61–64 (1997).
Graves, P. E. et al. A cluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children. J. Allergy Clin. Immunol. 105, 506–513 (2000).
Hershey, G. K., Friedrich, M. F., Esswein, L. A., Thomas, M. L. & Chatila, T. A. The association of atopy with a gain-of-function mutation in the α subunit of the interleukin-4 receptor. N. Engl. J. Med. 337, 1720–1725 (1997).
Heinzmann, A. et al. Genetic variants of IL-13 signalling and human asthma and atopy. Hum. Mol. Genet. 9, 549–559 (2000).
Ahmadi, K. R. et al. Novel association suggests multiple independent QTLs within chromosome 5q21–33 region control variation in total humans IgE levels. Genes Immun. 4, 289–297 (2003).
Zhang, Y. et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nature Genet. 34, 181–186 (2003).
Adra, C. N. et al. Variants of B cell lymphoma 6 (BCL6) and marked atopy. Clin. Genet. 54, 362–364 (1998).
Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998).
McIntire, J. J. et al. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nature Immunol 2, 1109–1116 (2001). The authors identified in mice, Tapr , a gene that controls the development of airway hyperreactivity, and cloned the T-cell immunoglobulin mucin ( Tim ) family — a new gene family and homologue of the human hepatitis A virus receptor that co-segregated with Tapr.
Locarnini, S. A virological perspective on the need for vaccination. J. Viral Hepat. 7, S5–S6 (2000).
Holla, A. D., Roy, S. R. & Liu, A. H. Endotoxin, atopy and asthma. Curr. Opin. Allergy Clin. Immunol. 2, 141–145 (2002).
Kemp, A. & Bjorksten, B. Immune deviation and the hygiene hypothesis: a review of the epidemiological evidence. Pediatr. Allergy Immunol. 14, 74–80 (2003).
Wills-Karp, M., Santeliz, J. & Karp, C. L. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nature Rev. Immunol. 1, 69–75 (2001).
Svetic, A. et al. A primary intestinal helminthic infection rapidly induces a gut-associated elevation of TH2-associated cytokines and IL-3. J. Immunol. 150, 3434–3441 (1993).
Yazdanbakhsh, M., Kremsner, P. G. & van Ree, R. Allergy, parasites, and the hygiene hypothesis. Science 296, 490–494 (2002).
Chiaramonte, M. G. et al. IL-13 is a key regulatory cytokine for TH2 cell-mediated pulmonary granuloma formation and IgE responses induced by Schistosoma mansoni eggs. J. Immunol. 162, 920–930 (1999).
Imai, S., Tezuka, H., Furuhashi, Y., Muto, R. & Fujita, K. A factor of inducing IgE from a filarial parasite is an agonist of human CD40. J. Biol. Chem. 276, 46118–46124 (2001).
Ferreira, M. B., da Silva, S. L. & Carlos, A. G. Atopy and helminths. Allerg. Immunol. (Paris) 34, 10–12 (2002).
Tezuka, H., Imai, S., Muto, R., Furuhashi, Y. & Fujita, K. Recombinant Dirofilaria immitis polyprotein that stimulates murine B cells to produce nonspecific polyclonal immunoglobulin E antibody. Infect. Immun. 70, 1235–1244 (2002).
Durandy, A. Hyper-IgM syndromes: a model for studying the regulation of class switch recombination and somatic hypermutation generation. Biochem. Soc. Trans. 30, 815–818 (2002).
Manis, J. P., Tian, M. & Alt, F. W. Mechanism and control of class-switch recombination. Trends Immunol. 23, 31–39 (2002).
Jain, A. et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nature Immunol. 2, 223–228 (2001).
Orange, J. S. et al. Deficient natural killer cell cytotoxicity in patients with IKK-γ/NEMO mutations. J. Clin. Invest. 109, 1501–1509 (2002).
Hilliard, B. A. et al. Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation. J. Clin. Invest. 110, 843–850 (2002).
Borggrefe, T., Wabl, M., Akhmedov, A. T. & Jessberger, R. A B-cell-specific DNA recombination complex. J. Biol. Chem. 273, 17025–17035 (1998).
Borggrefe, T., Keshavarzi, S., Gross, B., Wabl, M. & Jessberger, R. Impaired IgE response in SWAP-70-deficient mice. Eur. J. Immunol. 31, 2467–2475 (2001).
Bennett, C. L. et al. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics 53, 435–439 (2001).
Ramesh, N., Anton, I. M., Martinez-Quiles, N. & Geha, R. S. Waltzing with WASP. Trends Cell Biol. 9, 15–19 (1999).
Anton, I. M. et al. WIP deficiency reveals a differential role for WIP and the actin cytoskeleton in T and B cell activation. Immunity 16, 193–204 (2002).
Chavanas, S. et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nature Genet. 25, 141–142 (2000).
Matsuda, H. et al. Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int. Immunol. 9, 461–466 (1997).
Sur, S. et al. Long term prevention of allergic lung inflammation in a mouse model of asthma by CpG oligodeoxynucleotides. J. Immunol. 162, 6284–6293 (1999).
Muller, U. et al. Successful immunotherapy with T-cell epitope peptides of bee venom phospholipase A2 induces specific T-cell anergy in patients allergic to bee venom. J. Allergy Clin. Immunol. 101, 747–754 (1998).
Rolland, J. M., Douglass, J. & O'Hehir, R. E. Allergen immunotherapy: current and new therapeutic strategies. Expert Opin. Investig. Drugs 9, 515–527 (2000).
Horner, A. A. & Raz, E. Immunostimulatory sequence oligodeoxynucleotide-based vaccination and immunomodulation: two unique but complementary strategies for the treatment of allergic diseases. J. Allergy Clin. Immunol. 110, 706–712 (2002).
Sato, T. A. et al. Recombinant soluble murine IL-4 receptor can inhibit or enhance IgE responses in vivo. J. Immunol. 150, 2717–2723 (1993).
Boguniewicz, M. et al. Recombinant γ-interferon in treatment of patients with atopic dermatitis and elevated IgE levels. Am. J. Med. 88, 365–370 (1990).
Yabuuchi, S., Nakamura, T., Kloetzer, W. S. & Reff, M. E. Anti-CD23 monoclonal antibody inhibits germline Cε transcription in B cells. Int. Immunopharmacol. 2, 453–461 (2002).
Leung, D. Y. et al. Effect of anti-IgE therapy in patients with peanut allergy. N. Engl. J. Med. 348, 986–993 (2003). This clinical trial of subcutaneous administration of IgE-specific monoclonal antibody (TNX-901) was shown to increase the threshold of sensitivity to oral peanut challenge.