Khung tham chiếu cho việc mã hóa và lưu giữ chuyển động phụ thuộc vào kích thước tập hợp kích thích

Attention, Perception, & Psychophysics - Tập 79 - Trang 888-910 - 2017
Haluk Öğmen1,2,3, Harold E. Bedell1,4, Duong Huynh2, Srimant P. Tripathy5
1Center for Neuro-Engineering and Cognitive Science, University of Houston, Houston, USA
2Department of Electrical and Computer Engineering, University of Houston, Houston, USA
3Department of Electrical and Computer Engineering, University of Denver, Denver, USA
4College of Optometry, University of Houston, Houston, USA
5School of Optometry and Vision Science, University of Bradford, Bradford, UK

Tóm tắt

Mục tiêu của nghiên cứu này là điều tra các khung tham chiếu được sử dụng trong việc mã hóa và lưu trữ thông tin chuyển động thị giác. Trong các thử nghiệm của chúng tôi, người quan sát đã xem nhiều đối tượng đang chuyển động và báo cáo hướng chuyển động của một đối tượng được chọn ngẫu nhiên. Bằng cách sử dụng kỹ thuật phân tích vectơ, chúng tôi đã tính toán hiệu suất trong quá trình theo dõi mượt mà liên quan đến một thành phần không gian (không theo lưới võng mạc) và một thành phần theo lưới võng mạc, và so sánh chúng với hiệu suất trong điều kiện cố định, điều này phục vụ như là giá trị cơ sở. Đối với giai đoạn mã hóa kích thích, giai đoạn trước khi ghi nhớ, chúng tôi phát hiện rằng khung tham chiếu phụ thuộc vào kích thước tập hợp kích thích. Đối với một mục tiêu chuyển động đơn lẻ, khung tham chiếu không gian có đóng góp lớn nhất với một số đóng góp bổ sung từ khung tham chiếu theo lưới võng mạc. Khi số lượng đối tượng tăng lên (Kích thước tập hợp từ 3 đến 7), khung tham chiếu không gian có thể giải thích hiệu suất. Cuối cùng, khi số lượng đối tượng lớn hơn 7, sự khác biệt giữa các khung tham chiếu biến mất. Chúng tôi diễn dịch phát hiện này như một sự chuyển đổi sang một mã hóa trừu tượng không theo đo lường về hướng chuyển động. Chúng tôi nhận thấy rằng khung tham chiếu theo lưới võng mạc không được sử dụng trong ký ức. Được đưa vào cùng với các nghiên cứu khác, kết quả của chúng tôi cho thấy rằng, trong khi khung tham chiếu theo lưới võng mạc có thể được sử dụng để điều khiển các cử động mắt, thì cảm nhận và ký ức chủ yếu sử dụng các khung tham chiếu không theo lưới võng mạc. Hơn nữa, việc sử dụng các khung tham chiếu không theo lưới võng mạc dường như bị giới hạn bởi năng lực. Trong trường hợp các kích thích phức tạp, hệ thống thị giác có thể sử dụng việc nhóm cảm giác để đơn giản hóa sự phức tạp của các kích thích hoặc sử dụng mã hóa trừu tượng không theo đo lường cho thông tin chuyển động.

Từ khóa

#Cognitive Psychology

Tài liệu tham khảo

Agaoglu, M. N., Herzog, M. H., & Öğmen, H. (2015a). Field-like interactions between motion-based reference frames. Attention, Perception & Psychophysics, 77, 2082–2097. Agaoglu, M. N., Herzog, M. H., & Öğmen, H. (2015b). The effective reference frame in perceptual judgments of motion direction. Vision Research, 107, 101–112. Andersen, R. A., Snyder, L. H., Li, C. S., & Stricanne, B. (1993). Coordinate transformations in the representation of spatial information. Current Opinion in Neurobiology, 3, 171–176. Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12, 157–162. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation (Volume 2) (pp. 89–195). New York: Academic Press. Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47–89). New York: Academic Press. Baker, J. T., Harper, T. M., & Snyder, L. H. (2003). Spatial memory following shifts of gaze: I. Saccades to memorized world-fixed and gaze-fixed targets. Journal of Neurophysiology, 89, 2564–2576. Bauer, B. (2015). A selective summary of visual averaging research and issues up to 2000. Journal of Vision, 15(4), 1–15. Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 10(7), 1–11. Becklen, R., Wallach, H., & Nitzberg, D. (1984). A limitation of position constancy. Journal of Experimental Psychology: Human Perception and Performance, 10, 713–723. Boi, M., Öğmen, H., Krummenacher, J., Otto, T. U., & Herzog, M. H. (2009). A (fascinating) litmus test for human retino- vs. nonretinotopic processing. Journal of Vision, 9(13), 1–11. Burr, D. (1980). Motion smear. Nature, 284, 164–165. Brady, T. M., & Alvarez, G. A. (2015). No evidence for a fixed object limit in working memory: Spatial ensemble representations inflate estimates of working memory capacity for complex objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 921–929. Braun, D. I., Schütz, A. C., & Gegenfurtner, K. R. (2010). Localization of speed differences of context stimuli during fixation and smooth pursuit eye movements. Vision Research, 50, 2740–2749. Bremner, A. J., Bryant, P. E., & Mareschal, D. (2005). Object-centred spatial reference in 4-month-old infants. Infant Behaviour and Development, 29, 1–10. Brenner, E., Smeets, J., & Van den Berg, A. V. (2001). Smooth eye movements and spatial localisation. Vision Research, 41, 2253–2259. Bridgeman, B. (1995). A review of the role of efference copy in sensory and oculomotor control systems. Annals of Biomedical Engineering, 23, 409–422. Bridgeman, B., Van der Heijden, A. H., & Velichkovsky, B. M. (1994). A theory of visual stability across saccadic eye movements. Behavioral and Brain Sciences, 17, 247–258. Burr, D. C., & Morrone, M. C. (2011). Spatiotopic coding and remapping in humans. Philosophical Transactions of the Royal Society of London B, 366(1564), 504–515. Burr, D. C., & Morrone, M. C. (2012). Constructing stable spatial maps of the world. Perception, 41(11), 1355–1372. Buswell, G. T. (1935). How people look at pictures. Chicago: University of Chicago Press. Cant, J. S., Sun, S. Z., & Xu, Y. (2015). Distinct cognitive mechanisms involved in the processing of single objects and object ensembles. Journal of Vision, 15(4), 1–21. Cavanagh, P., Hunt, A. R., Afraz, A., & Rolfs, M. (2010). Visual stability based on remapping of attention pointers. Trends in Cognitive Sciences, 14(4), 147–153. Chen, S., Bedell, H. E., & Öğmen, H. (1995). A target in real motion appears blurred in the absence of other proximal moving targets. Vision Research, 35, 2315–2328. Corbett, J. E., & Melcher, D. (2014). Characterizing ensemble statistics: Mean size is represented across multiple reference frames. Attention, Perception, & Psychophysics, 76, 746–758. de Fockert, J., & Wolfenstein, C. (2009). Rapid extraction of mean identity from sets of faces. Quarterly Journal of Experimental Psychology, 62, 1716–1722. De Graaf, B., & Wertheim, A. H. (1988). The perception of object-motion during smooth-pursuit eye movements: Adjacency is not a factor contributing to the Filehne illusion. Vision Research, 28, 497–502. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1–38. Duncker, K. (1938). Induced motion. In W. D. Ellis (Ed.), A sourcebook of Gestalt psychology. London, UK: Routledge & Kegan Paul. (Original work published in German, 1929). Engel, S. A. (1994). fMRI of human visual cortex. Nature, 370(6485), 106–106. Festinger, L., Sedgwick, H. A., & Holtzman, J. D. (1976). Visual perception during smooth pursuit eye movement. Vision Research, 16, 1377–1386. Freeman, T. C. A. (2001). Transducer models of head-centred motion perception. Vision Research, 41, 2741–2755. Gardner, J. L., Merriam, E. P., Movshon, J. A., & Heeger, D. J. (2008). Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. Journal of Neuroscience, 28(15), 3988–3999. Gibaldi, A., Canessa, A., & Sabatini, S. P. (2016). Visuomotor behavior of dominant and nondominant eye in 3D visual exploration. ECVP Abstracts. Golomb, J. D., & Kanwisher, N. (2012). Retinotopic memory is more precise than spatiotopic memory. Proceedings of the National Academy of Sciences of the United States of America, 109(5), 1796–1801. Haber, R. N. (1983). The impending demise of the icon: A critique of the concept of iconic storage in visual information processing. Behavioral and Brain Sciences, 6, 1–54. Haberman, J., & Whitney, D. (2007). Rapid extraction of mean emotion and gender from sets of faces. Current Biology, 17, R751–R753. Horowitz, T. S., & Cohen, M. A. (2010). Direction information in multiple object tracking is limited by a graded resource. Attention, Perception, & Psychophysics, 72, 1765–1775. Howe, P. D. L., Pinto, Y., & Horowitz, T. S. (2010). The coordinate systems used in visual tracking. Vision Research, 50, 2375–2380. Hubert-Wallander, B., & Boynton, G. M. (2015). Not all summary statistics are made equal: Evidence from extracting summaries over time. Journal of Vision, 15(4), 1–12. Huynh, D., Tripathy, S. P., Bedell, H. E., & Öğmen, H. (2015). Stream specificity and asymmetries in feature binding and content-addressable access in visual encoding and memory. Journal of Vision, 15(13), 14, 1–32. Intriligator, J., & Cavanagh, P. (2001). The spatial resolution of visual attention. Cognitive Psychology, 43, 171–216. Irwin, D. E., Brown, J. S., & Sun, J. S. (1988). Visual masking and visual integration across saccadic eye movements. Journal of Experimental Psychology, 117, 276–287. Irwin, D. E., Yantis, S., & Jonides, J. (1983). Evidence against visual integration across saccadic eye movements. Perception & Psychophysics, 34, 49–57. Jancke, D., Chavane, F., Naaman, S., & Grinvald, A. (2004). Imaging cortical correlates of illusion in early visual cortex. Nature, 428, 423–426. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201–211. Jonides, J., Irwin, D. E., & Yantis, S. (1983). Failure to integrate information from successive fixations. Science, 222, 188. Levi, D. M., & Tripathy, S. P. (2006). Is the ability to identify deviations in multiple trajectories compromised by amblyopia? Journal of Vision, 6, 1367–1379. Mack, A. (1986). Perceptual aspects of motion in the frontal plane. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance (Vol. I, pp. 1–38). New York: Wiley. Mack, A., & Herman, E. (1978). The loss of position constancy during pursuit eye movements. Vision Research, 18, 55–62. Mateeff, S. (1980). Visual perception of movement patterns during smooth eye tracking. Acta Physiologica et Pharmacologica Bulgarica, 6, 82–89. Mateeff, S., & Hohnsbein, J. (1988). Perceptual latencies are shorter for motion towards the fovea than for motion away. Vision Research, 28, 711–719. Mateeff, S., Yakimoff, N., Hohnsbein, J., Ehrenstein, W. H., Bohdanecky, Z., & Radil, T. (1991). Selective directional sensitivity in visual motion perception. Vision Research, 31, 131–138. Mays, L. E., & Sparks, D. L. (1980). Dissociation of visual and saccade-related responses in superior colliculus neurons. Journal of Neurophysiology, 43, 207–232. McKenzie, A., & Lisberger, S. G. (1986). Properties of signals that determine the amplitude and direction of saccadic eye movements in monkeys. Journal of Neurophysiology, 56, 196–207. Melcher, D., & Colby, C. L. (2008). Trans-saccadic perception. Trends in Cognitive Sciences, 12, 466–473. Melcher, D., & Fracasso, A. (2012). Remapping of the line motion illusion across eye movements. Experimental Brain Research, 218, 503–514. Melcher, D., & Morrone, M. C. (2015). Nonretinotopic visual processing in the brain. Visual Neuroscience, 32, E017. Miles, W. R. (1929). Ocular dominance demonstrated by unconscious sighting: Ocular dominance demonstrated by unconscious sighting. Journal of Experimental Psychology, 12, 113–126. Miles, W. R. (1930). Ocular dominance in human adults. Journal of General Psychology, 3, 412–429. Mita, T., Hironaka, K., & Koike, I. (1950). The influence of retinal adaptation and location on the “Empfindungszeit.”. Tohoku Journal of Experimental Medicine, 52, 397–405. Mitrani, L., & Dimitrov, G. (1982). Retinal location and visual localization during pursuit eye movement. Vision Research, 22, 1047–1051. Narasimhan, S., Tripathy, S. P., & Barrett, B. T. (2009). Loss of positional information when tracking multiple moving dots: The role of visual memory. Vision Research, 49, 10–27. Nishida, S. (2004). Motion-based analysis of spatial patterns by the human visual system. Current Biology, 14, 830–839. Noory, B., Herzog, M. H., & Öǧmen, H. (2015). Spatial properties of nonretinotopic reference frames in human vision. Vision Research, 113, 44–54. Norman, L. J., Heywood, C. A., & Kentridge, R. W. (2015). Direct encoding of orientation variance in the visual system. Journal of Vision, 15(4), 1–14. Nyström, M., Andersson, R., Holmqvist, K., & van de Weijer, J. (2013). The influence of calibration method and eye physiology on eyetracking data quality. Behavior Research Methods, 45, 272–288. Öğmen, H. (2007). A theory of moving form perception: Synergy between masking, perceptual grouping, and motion computation in retinotopic and nonretinotopic representations. Advances in Cognitive Psychology, 3, 67–84. Öğmen, H., Ekiz, O., Huynh, D., Tripathy, S. P., & Bedell, H. E. (2013). Bottlenecks of motion processing during a visual glance: The leaky flask model. PLOS ONE. doi:10.1371/journal.pone.0083671 Öğmen, H., & Herzog, M. H. (2010). The geometry of visual perception: Retinotopic and nonretinotopic representations in the human visual system. Proceedings of the IEEE, 98, 479–492. Ögmen, H., Otto, T., & Herzog, M. H. (2006). Perceptual grouping induces non-retinotopic feature attribution in human vision. Vision Research, 46, 3234–3242. Ong, W. S., Hooshvar, N., Zhang, M., & Bisley, J. W. (2009). Psychophysical evidence for spatiotopic processing in area MT in a short-term memory for motion task. Journal of Neurophysiology, 102, 2435–2440. Orban de Xivry, J. J., & Lefèvre, P. (2007). Saccades and pursuit: Two outcomes of a single sensorimotor process. Journal of Physiology, 584, 11–23. Otto, T., Öğmen, H., & Herzog, M. H. (2006). The flight path of the phoenix: The visible trace of invisible elements in human vision. Journal of Vision, 6, 1079–1086. Pertzov, Y., Avidan, G., & Zohary, E. (2011). Multiple reference frames for saccadic planning in the human parietal cortex. Journal of Neuroscience, 31, 1059–1068. Pylyshyn, Z., & Storm, R. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3, 179–197. Rashbass, C. (1961). The relationship between saccadic and smooth tracking eye movements. Journal of Physiology, 159, 326–338. Rayner, K., & Pollatsek, A. (1983). Is visual information integrated across saccades? Perception & Psychophysics, 34, 39–48. Robinson, D. A., Gordon, J. L., & Gordon, S. E. (1986). A model of the smooth pursuit eye movement system. Biological Cybernetics, 55, 43–57. Rotman, G., Brenner, E., & Smeets, J. B. J. (2004). Quickly tapping targets that are flashed during smooth pursuit reveals perceptual mislocalizations. Experimental Brain Research, 156, 409–414. Rotman, G., Brenner, E., & Smeets, J. B. J. (2005). Flashes are localized as if they were moving with the eyes. Vision Research, 45, 355–364. Scharnowski, F., Hermens, F., Kammer, T., Öğmen, H., & Herzog, M. H. (2007). Feature fusion reveals slow and fast memories. Journal of Cognitive Neuroscience, 19, 632–641. Sereno, M. I., Pitzalis, S., & Martinez, A. (2001). Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science, 294(5545), 1350–1354. Shooner, C., Tripathy, S., Bedell, H., & Öğmen, H. (2010). High-capacity, transient retention of direction-of-motion information for multiple moving objects. Journal of Vision, 10(6), 1–20. Snowden, R. J. (1994). Motion processing in the primate cerebral cortex. In A. T. Smith & R. J. Snowden (Eds.), Visual detection of motion (pp. 51–83). London: Academic. Souman, J. L., Hooge, I. T. C., & Wertheim, A. H. (2005a). Vertical object motion during horizontal ocular pursuit: Compensation for eye movements increases with presentation duration. Vision Research, 45, 845–853. Souman, J. L., Hooge, I. T. C., & Wertheim, A. H. (2005b). Perceived motion direction during smooth pursuit eye movements. Experimental Brain Research, 164, 376–386. Souman, J. L., Hooge, I. T. C., & Wertheim, A. H. (2006a). Localization and motion perception during smooth pursuit eye movement. Experimental Brain Research, 171, 448–458. Souman, J. L., Hooge, I. T. C., & Wertheim, A. H. (2006b). Frame of reference transformations in motion perception during smooth pursuit eye movements. Journal of Computational Neuroscience, 20, 61–76. Sun, J. S., & Irwin, D. E. (1987). Retinal masking during pursuit eye movements: implications for spatiotopic visual persistence. Journal of Experimental Psychology, 13, 140–145. Swanston, M. T., & Wade, N. J. (1988). The perception of visual motion during movements of the eyes and of the head. Perception & Psychophysics, 43, 559–566. Sweeny, T. D., Haroz, S., & Whitney, D. (2012). Perceiving group behavior: Sensitive ensemble coding mechanisms for biological motion of human crowds. Journal of Experimental Psychology: Human Perception and Performance, 39, 329–337. Tootell, R. B. H., Hadjikhani, N. K., Vandufflel, W., Liu, A. K., Mendola, J. D., Sereno, M. I., & Dale, A. M. (1998). Functional analysis of primary visual cortex (V1) in humans. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 811–817. Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., & Billeveau, J. W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic-resonance-imaging. Journal of Neuroscience, 15(4), 3215–3230. Tripathy, S. P., & Barrett, B. T. (2004). Severe loss of positional information when detecting deviations in multiple trajectories. Journal of Vision, 4(12), 1020–1043. Tripathy, S. P., & Levi, D. M. (2008). On the effective number of tracked trajectories in amblyopic human vision. Journal of Vision, 8(4), 1–22. doi:10.1167/7.6.2 Tripathy, S. P., Narasimhan, S., & Barrett, B. T. (2007). On the effective number of tracked trajectories in normal human vision. Journal of Vision, 7(6), 1–18. doi:10.1167/7.6.2 Turano, K. A., & Massof, R. W. (2001). Nonlinear contribution of eye velocity to motion perception. Vision Research, 41, 385–395. Van Beers, R. J., Wolpert, D. M., & Haggard, P. (2001). Sensorimotor integration compensates for visual localization errors during smooth pursuit eye movements. Journal of Neurophysiology, 85, 1914–1922. Vikesdal, G. H., & Langaas, T. (2016). Saccade latency and fixation stability: Repeatability and reliability. Journal of Eye Movement Research, 9, 1–13. Von Helmholtz, H. (1925). Treatise on physiological optics (Vol. 3). New York: Optical Society of America. Von Holst, E. (1954). Relations between the central nervous system and the peripheral organs. British Journal of Animal Behaviour, 2, 89–94. Wade, N. J., & Swanston, M. T. (1996). A general model for the perception of space and motion. Perception, 25, 187–194. Wallach, H., Becklen, R., & Nitzberg, D. (1985). The perception of motion during collinear eye movements. Perception & Psychophysics, 38, 18–22. Ward, F. (1976). Pursuit eye movements and visual localization. In R. A. Monty & J. W. Senders (Eds.), Eye movements and psychological processes. New York: Wiley. Wertheim, A. H. (1994). Motion perception during self-motion: The direct versus inferential controversy revisited. Behavioral and Brain Sciences, 17, 293–355. Wurtz, R. H. (2008). Neuronal mechanisms of visual stability. Vision Research, 48(20), 2070–2089. Yantis, S. (1992). Multi-element visual tracking: Attention and perceptual organization. Cognitive Psychology, 24, 295–340. Yarbus, A. L. (1967). Eye movements and vision. New York: Plenum Press. Zelinsky, G., & Todor, A. (2010). The role of “rescue saccades” in tracking objects through occlusions. Journal of Vision, 10(7), 132. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233–235.