The recursive Green’s function method for graphene
Tóm tắt
Từ khóa
Tài liệu tham khảo
Castro Neto, A.H.F., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)
Mucciolo, E.R., Lewenkopf, C.H.: Disorder and electronic transport in graphene. J. Phys. Condens. Matter 22, 273201 (2010)
Shon, N.H., Ando, T.: Quantum transport in two-dimensional graphite system. J. Phys. Soc. Jpn. 67, 2421 (1998)
Ostrovsky, P.M., Gornyi, I.V., Mirlin, A.D.: Electron transport in disordered graphene. Phys. Rev. B 74, 235443 (2006)
Nomura, K., MacDonald, A.H.: Quantum transport of massless Dirac fermions. Phys. Rev. Lett. 98, 076602 (2007)
Nomura, K., Koshino, M., Ryu, S.: Topological delocalization of two-dimensional massless Dirac fermions. Phys. Rev. Lett. 99, 146806 (2007)
Tworzydło, J., Groth, C.W., Beenakker, C.W.J.: Finite difference method for transport properties of massless Dirac fermions. Phys. Rev. B 78, 235438 (2008)
Hernández, A.R., Lewenkopf, C.H.: Finite-difference method for transport of two-dimensional massless Dirac fermions in a ribbon geometry. Phys. Rev. B 86, 155439 (2012)
Thouless, D.J., Kirkpatrick, S.: Conductivity of the disordered linear chain. J. Phys. C 14, 235 (1981)
Drouvelis, P.S., Schmelcher, P., Bastian, P.: Parallel implementation of the recursive Green’s function method. J. Comput. Phys. 215, 741 (2006)
MacKinnon, A.: The calculation of transport properties and density of states of disordered solids. Z. Phys. B 59, 385 (1985)
Sols, F., Macucci, M., Ravaioli, U., Hess, K.: Theory for a quantum modulated transistor. J. Appl. Phys. 66, 3892 (1989)
Baranger, H.U., DiVincenzo, D.P., Jalabert, R.A., Stone, A.D.: Classical and quantum ballistic-transport anomalies in microjunctions. Phys. Rev. B 44, 10637 (1991)
Kazymyrenko, K., Waintal, X.: Knitting algorithm for calculating Green functions in quantum systems. Phys. Rev. B 77, 115119 (2008)
Kramer, T., Kreisbeck, C., Krueckl, V.: Wave-packet dynamics approach to transport in mesoscopic systems. Phys. Scr. 82, 038101 (2010)
Yuan, S., De Raedt, H., Katsnelson, M.I.: Modeling electronic structure and transport properties of graphene with resonant scattering centers. Phys. Rev. B 82, 115448 (2010)
Weiße, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method. Rev. Mod. Phys. 78, 275 (2006)
Ferreira, A., Viana-Gomes, J., Nilsson, J., Mucciolo, E.R., Peres, N.M.R., Castro Neto, A.H.: Unified description of the dc conductivity of monolayer and bilayer graphene at finite densities based on resonant scatterers. Phys. Rev. B 83, 165402 (2011)
Triozon, F., Roche, S.: Efficient linear scaling method for computing the Landauer-Büttiker conductance. Eur. Phys. J. B 46, 427 (2005)
Liu, M.-H., Richter, K.: Efficient quantum transport simulation for bulk graphene heterojunctions. Phys. Rev. B 86, 115445 (2012)
Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1996)
Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures. Cambridge University Press, Cambridge (1997)
Pastawski, H.M., Medina, E.: Tight-Binding methods in quantum transport through molecules and small devices: from the coherent to the decoherent description. Rev. Mex. Fis. 47, 1 (2001)
Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 32, 306 (1988)
Caroli, C., Combescot, R., Nozieres, P., Saint-James, D.: Direct calculation of the tunneling current. J. Phys. C 4, 916 (1971)
Fisher, D.S., Lee, P.A.: Relation between conductivity and transmission matrix. Phys. Rev. B 23, 6851 (1981)
Sajjad, R.N., Polanco, C., Ghosh, A.W.: Atomistic deconstruction of current flow in graphene based hetero-junctions (2013). arXiv:1302.4473
Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512 (1992)
Hernández, A., Apel, V.M., Pinheiro, F.A., Lewenkopf, C.H.: Quantum electronic transport: linear and nonlinear conductance from the Keldysh approach. Physica A 385, 148 (2007)
Lewenkopf, C.H., Mucciolo, E.R., Castro Neto, A.H.: Numerical studies of conductivity and Fano factor in disordered graphene. Phys. Rev. B 77, 081410R (2008)
Haug, H., Jauho, A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors, 2nd edn. Springer, Heidelberg (2008)
Mucciolo, E.R.: Unpublished
Schomerus, H.: Effective contact model for transport through weakly-doped graphene. Phys. Rev. B 76, 045433 (2007)
Areshkin, D.A., Nikolić, B.K.: I-V curve signatures of nonequilibrium-driven band gap collapse in magnetically ordered zigzag graphene nanoribbon two-terminal devices. Phys. Rev. B 79, 205430 (2009)
Lopez Sancho, M.P., Lopez Sancho, J.M., Rubio, J.: Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F, Met. Phys. 15, 851 (1985)
Rocha, A.R., García-Suárez, V.M., Bailey, S., Lambert, C., Ferrer, J., Sanvito, S.: Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 73, 085414 (2006)
Wimmer, M.: Quantum transport in nanostructures: From computational concepts to spintronics in graphene and magnetic tunnel junctions. Dissertation, University Regensburg (2009). http://epub.uni-regensburg.de/12142/
Tworzydło, J., Trauzettel, B., Titov, M., Rycerz, A., Beenakker, C.W.J.: Sub-poissonian shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006). Supplementary material is found in arXiv:cond-mat/0603315
Rycerz, A., Tworzydło, J., Beenakker, C.W.J.: Anomalously large conductance fluctuations in weakly disordered graphene. Europhys. Lett. 79, 57003 (2007)
Metalidis, G., Bruno, P.: Green’s function technique for studying electron flow in two-dimensional mesoscopic samples. Phys. Rev. B 72, 235304 (2005)
Todorov, T.N.: Tight-binding simulation of current-carrying nanostructures. J. Phys. Condens. Matter 14, 3049 (2002)
Cresti, A., Farchioni, R., Grosso, G., Parravicini, G.P.: Keldysh-Green function formalism for current profiles in mesoscopic systems. Phys. Rev. B 68, 075306 (2003)
Yazyev, O.: Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 73, 056501 (2010)
Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)
Xue, Y., Datta, S., Ratner, M.A.: First-principles based matrix Green’s function approach to molecular electronic devices: general formalism. Chem. Phys. 281, 151 (2002)
Areshkin, D.A., Nikolić, B.K.: Electron density and transport in top-gated graphene nanoribbon devices: first-principles Green function algorithms for systems containing a large number of atoms. Phys. Rev. B 81, 155540 (2010)
Bruus, H., Flensberg, K.: Many-Body Quantum Theory in Condensed Matter Physics: An Introduction. Oxford University Press, New York (2004)
Nazarov, Y.V., Blanter, Y.M.: Quantum Transport: Introduction to Nanoscience. Cambridge University Press, New York (2009)
D’Amato, J.L., Pastawski, H.M.: Conductance of a disordered linear chain including inelastic scattering events. Phys. Rev. B 41, 7411 (1990)
Martin, J., Akerman, N., Ulbricht, G., Lohmann, T.: Observation of electron-hole puddles in graphene using a scanning single electron transistor. Nat. Phys. 4, 144 (2008)
Zhang, Y., Brar, V.W., Girit, C., Zettl, A., Crommie, M.F.: Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 5, 722 (2009)
Ishigami, M., Chen, J.H., Cullen, W.G., Fuhrer, M.S., Williams, E.D.: Atomic structure of graphene on SiO2. Nano Lett. 7, 1643 (2007)
Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Obergfell, D., Roth, S., Girit, Ç., Zettl, A.: On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101 (2007)
Levy, N., Burke, K.L., Meaker, S.A., Panlasigui, M., Zettl, A., Guinea, F., Castro Neto, A.H., Crommie, M.F.: Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329, 544 (2010)
Chen, J.H., Jang, C., Adam, S., Fuhrer, M.S., Williams, E.D., Ishigami, M.: Charged-impurity scattering in graphene. Nat. Phys. 4, 377 (2008)
Chen, J.-H., Cullen, W.G., Jang, C., Fuhrer, M.S., Williams, E.D.: Defect scattering in graphene. Phys. Rev. Lett. 102, 236805 (2009)
Han, M., Brant, J.C., Kim, P.: Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010)
Peres, N.M.R.: Colloquium: the transport properties of graphene: an introduction. Rev. Mod. Phys. 82, 2673 (2010)
Das Sarma, S., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407 (2011)
Adam, S., Brouwer, P.W., Das Sarma, S.: Crossover from quantum to Boltzmann transport in graphene. Phys. Rev. B 79, 201404 (2009)
Kłos, J.W., Zozoulenko, I.V.: Effect of short- and long range scattering on the conductivity of graphene: Boltzmann approach vs tight-binding calculations. Phys. Rev. B 82, 081414(R) (2010)
Pereira, V.M., Castro Neto, A.H., Peres, N.M.R.: Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009)
Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, 3rd edn. Pergamon, London (1986)
Vozmediano, M.A.H., Katsnelson, M.I., Guinea, F.: Gauge fields in graphene. Phys. Rep. 496, 109 (2010)
Lundeberg, M.B., Folk, J.A.: Rippled graphene in an in-plane magnetic field: effects of a random vector potential. Phys. Rev. Lett. 105, 146804 (2010)
Sols, F., Guinea, F., Castro Neto, A.H.: Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007)
Vérges, J.A., Guinea, F., Chiappe, G., Louis, E.: Transport regimes in surface disordered graphene sheets. Phys. Rev. B 75, 085440 (2007)
Evaldsson, M., Zozoulenko, I.V., Xu, H., Heinzel, T.: Edge disorder induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 78, 161407(R) (2008)
Mucciolo, E.R., Castro Neto, A.H., Lewenkopf, C.H.: Conductance quantization and transport gaps in disordered graphene nanoribbons. Phys. Rev. B 79, 075407 (2009)
Brey, L., Fertig, H.A.: Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73, 235411 (2006)
Zârbo, L.P., Nikolić, B.K.: Spatial distribution of local currents of massless Dirac fermions in quantum transport through graphene nanoribbons. Europhys. Lett. 80, 47001 (2007)
Chang, P.-H., Nikolić, B.K.: Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics. Phys. Rev. B 86, 041406(R) (2012)
Tao, C., Jiao, L., Yazyev, O.V., Chen, Y.-C., Feng, J., Zhang, X., Capaz, R.B., Tour, J.M., Zettl, A., Louie, S.G., Dai, H., Crommie, M.F.: Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616 (2011)
Wakabayashi, K., Takane, Y., Sigrist, M.: Perfectly conducting channel and universality crossover in disordered graphene nanoribbons. Phys. Rev. Lett. 99, 036601 (2007)
Wakabayashi, K., Takane, Y., Yamamoto, M., Sigrist, M.: Electronic transport properties of graphene nanoribbons. New J. Phys. 11, 095016 (2009)
Lima, L.R.F., Pinheiro, F.A., Capaz, R.B., Lewenkopf, C.H., Mucciolo, E.R.: Effects of disorder range and electronic energy on the perfect transmission in graphene nanoribbons. Phys. Rev. B 86, 205111 (2012)