The rectification of mono- and bivalent ions in single conical nanopores

Elsevier BV - Tập 404 - Trang 219-223 - 2017
Junzhe Wei1,2, Guanghua Du1, Jinlong Guo1, Yaning Li1,2, Wenjing Liu1, Huijun Yao1, Jing Zhao1,2, Ruqun Wu1, Hao Chen1,3, Artem Ponomarov1
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
2University of Chinese Academy of Sciences, Beijing, China
3Institute of Nuclear Science and Technology, University of Lanzhou, Lanzhou, China

Tài liệu tham khảo

Siwy, 2006, Ion-current rectification in nanopores and nanotubes with broken symmetry, Adv. Funct. Mater., 16, 735, 10.1002/adfm.200500471 Howorka, 2009, Nanopore analytics: sensing of single molecules, Chem. Soc. Rev., 38, 2360, 10.1039/b813796j Guo, 2010, Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater., 20, 1339, 10.1002/adfm.200902312 Tian, 2012, Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing, ChemPhysChem, 13, 2455, 10.1002/cphc.201200057 Bearden, 2016, Detecting and identifying small molecules in a nanopore flux capacitor, Nanotechnology, 27, 075503, 10.1088/0957-4484/27/7/075503 Yao, 2016, Bivalent ion transport through graphene/PET nanopore, Appl. Phys. A, 122, 10.1007/s00339-016-0021-z Apel, 2001, Diode-like single-ion track membrane prepared by electro-stopping, Nucl. Instrum. Methods Phys. Res. Sect. B, 184, 337, 10.1016/S0168-583X(01)00722-4 Wei, 1997, Current rectification at quartz nanopipet electrodes, Anal. Chem., 69, 4627, 10.1021/ac970551g Stein, 2004, Surface-charge-governed ion transport in nanofluidic channels, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.035901 Schiedt, 2005, Transport of ions and biomolecules through single asymmetric nanopores in polymer films, Nucl. Instrum. Methods Phys. Res. Sect. B, 236, 109, 10.1016/j.nimb.2005.03.265 Guo, 2008, Electrolytic conduction properties of single conical nanopores, Radiat. Meas., 43, S623, 10.1016/j.radmeas.2008.03.067 He, 2009, Tuning transport properties of nanofluidic devices with local charge inversion, J. Am. Chem. Soc., 131, 5194, 10.1021/ja808717u Guo, 2011, PH-reversed ionic current rectification displayed by conically shaped nanochannel without any modification, Nanoscale, 3, 3767, 10.1039/c1nr10434a Lan, 2011, Pressure-dependent ion current rectification in conical-shaped glass nanopores, J. Am. Chem. Soc., 133, 13300, 10.1021/ja205773a Momotenko, 2011, Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores, J. Am. Chem. Soc., 133, 14496, 10.1021/ja2048368 Liu, 2012, Surface charge density determination of single conical nanopores based on normalized ion current rectification, Langmuir, 28, 1588, 10.1021/la203106w Perera, 2015, Effect of the electric double layer on the activation energy of ion transport in conical nanopores, J. Phys. Chem. C, 119, 24299, 10.1021/acs.jpcc.5b08194 Du, 2013, The data acquisition and beam control system at the IMP microbeam facility, Nucl. Instrum. Methods Phys. Res. Sect. B, 306, 29, 10.1016/j.nimb.2012.11.034 Guo, 2016, Live cell imaging combined with high-energy single-ion microbeam, Rev. Sci. Instrum., 87, 034301, 10.1063/1.4943257 Kovarik, 2009, Effect of conical nanopore diameter on ion current rectification, J. Phys. Chem. B, 113, 15960, 10.1021/jp9076189 Wen, 2016, Highly selective ionic transport through subnanometer pores in polymer films, Adv. Funct. Mater., 26, 5796, 10.1002/adfm.201601689 Dove, 1997, The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz, Geochim. Cosmochim. Acta, 61, 3329, 10.1016/S0016-7037(97)00217-2 Siwy, 2004, Conical-nanotube ion-current rectifiers: the role of surface charge, J. Am. Chem. Soc., 126, 10850, 10.1021/ja047675c