The rectification of mono- and bivalent ions in single conical nanopores
Tài liệu tham khảo
Siwy, 2006, Ion-current rectification in nanopores and nanotubes with broken symmetry, Adv. Funct. Mater., 16, 735, 10.1002/adfm.200500471
Howorka, 2009, Nanopore analytics: sensing of single molecules, Chem. Soc. Rev., 38, 2360, 10.1039/b813796j
Guo, 2010, Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater., 20, 1339, 10.1002/adfm.200902312
Tian, 2012, Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing, ChemPhysChem, 13, 2455, 10.1002/cphc.201200057
Bearden, 2016, Detecting and identifying small molecules in a nanopore flux capacitor, Nanotechnology, 27, 075503, 10.1088/0957-4484/27/7/075503
Yao, 2016, Bivalent ion transport through graphene/PET nanopore, Appl. Phys. A, 122, 10.1007/s00339-016-0021-z
Apel, 2001, Diode-like single-ion track membrane prepared by electro-stopping, Nucl. Instrum. Methods Phys. Res. Sect. B, 184, 337, 10.1016/S0168-583X(01)00722-4
Wei, 1997, Current rectification at quartz nanopipet electrodes, Anal. Chem., 69, 4627, 10.1021/ac970551g
Stein, 2004, Surface-charge-governed ion transport in nanofluidic channels, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.035901
Schiedt, 2005, Transport of ions and biomolecules through single asymmetric nanopores in polymer films, Nucl. Instrum. Methods Phys. Res. Sect. B, 236, 109, 10.1016/j.nimb.2005.03.265
Guo, 2008, Electrolytic conduction properties of single conical nanopores, Radiat. Meas., 43, S623, 10.1016/j.radmeas.2008.03.067
He, 2009, Tuning transport properties of nanofluidic devices with local charge inversion, J. Am. Chem. Soc., 131, 5194, 10.1021/ja808717u
Guo, 2011, PH-reversed ionic current rectification displayed by conically shaped nanochannel without any modification, Nanoscale, 3, 3767, 10.1039/c1nr10434a
Lan, 2011, Pressure-dependent ion current rectification in conical-shaped glass nanopores, J. Am. Chem. Soc., 133, 13300, 10.1021/ja205773a
Momotenko, 2011, Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores, J. Am. Chem. Soc., 133, 14496, 10.1021/ja2048368
Liu, 2012, Surface charge density determination of single conical nanopores based on normalized ion current rectification, Langmuir, 28, 1588, 10.1021/la203106w
Perera, 2015, Effect of the electric double layer on the activation energy of ion transport in conical nanopores, J. Phys. Chem. C, 119, 24299, 10.1021/acs.jpcc.5b08194
Du, 2013, The data acquisition and beam control system at the IMP microbeam facility, Nucl. Instrum. Methods Phys. Res. Sect. B, 306, 29, 10.1016/j.nimb.2012.11.034
Guo, 2016, Live cell imaging combined with high-energy single-ion microbeam, Rev. Sci. Instrum., 87, 034301, 10.1063/1.4943257
Kovarik, 2009, Effect of conical nanopore diameter on ion current rectification, J. Phys. Chem. B, 113, 15960, 10.1021/jp9076189
Wen, 2016, Highly selective ionic transport through subnanometer pores in polymer films, Adv. Funct. Mater., 26, 5796, 10.1002/adfm.201601689
Dove, 1997, The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz, Geochim. Cosmochim. Acta, 61, 3329, 10.1016/S0016-7037(97)00217-2
Siwy, 2004, Conical-nanotube ion-current rectifiers: the role of surface charge, J. Am. Chem. Soc., 126, 10850, 10.1021/ja047675c
