The reactivity of Fe(II) associated with goethite formed during short redox cycles toward Cr(VI) reduction under oxic conditions

Chemical Geology - Tập 464 - Trang 101-109 - 2017
Elizabeth J. Tomaszewski1, Seungyeol Lee2, Jared Rudolph1, Huifang Xu2, Matthew Ginder-Vogel1
1The University of Wisconsin-Madison, Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program, 660N Park St, Madison, WI 53706, United States
2The University of Wisconsin-Madison, Department of Geoscience, 1215 W Dayton St, Madison, WI 53706, United States

Tài liệu tham khảo

Alexandrov, 2014, Electron transport in pure and substituted iron oxyhydroxides by small-polaron migration, Chem. Phys., 140, 234701 Bartlett, 1979, Behavior of chromium in soils: III. Oxidation, J. Environ. Qual., 8, 31, 10.2134/jeq1979.00472425000800010008x Bidoglio, 1993, X-ray absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides, Geochim. Cosmochim. Acta, 57, 2389, 10.1016/0016-7037(93)90576-I Boland, 2014, Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite, Environ. Sci. Technol., 10.1021/es4043275 Bond, 2003, Kinetics and structural constraints of chromate reduction by green rusts, Environ. Sci. Technol., 37, 2750, 10.1021/es026341p Borges, 2002, Chromium(III) determination with 1,5-diphenylcarbazide based on the oxidative effect of chlorine radicals generated from CCl4 sonolysis in aqueous solution, Anal. Sci., 18, 1361, 10.2116/analsci.18.1361 Charlet, 1992, X-ray absorption spectroscopic study of the sorption of Cr (III) at the oxide-water interface: II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide, J. Colloid Interface Sci., 148, 443, 10.1016/0021-9797(92)90182-L Couture, 2015, On–off mobilization of contaminants in soils during redox oscillations, Environ. Sci. Technol., 10.1021/es5061879 Eary, 1988, Chromate removal from aqueous wastes by reduction with ferrous ion, Environ. Sci. Technol., 22, 972, 10.1021/es00173a018 Eary, 1991, Chromate reduction by subsurface soils under acidic conditions, Soil Sci. Soc. Am. J., 55, 676, 10.2136/sssaj1991.03615995005500030007x Fendorf, 1995, Surface reactions of chromium in soils and waters, Geoderma, 67, 55, 10.1016/0016-7061(94)00062-F Fendorf, 1997, Arsenate and chromate retention mechanisms on goethite. 1. Surface structure, Environ. Sci. Technol., 31, 315, 10.1021/es950653t Gheju, 2011, Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems, Water Air Soil Pollut., 222, 103, 10.1007/s11270-011-0812-y Gorski, 2012, Fe atom exchange between aqueous Fe2+ and magnetite, Environ. Sci. Technol., 46, 12399, 10.1021/es204649a Handler, 2009, Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study, Environ. Sci. Technol., 43, 1102, 10.1021/es802402m Handler, 2014, Fe(II)-catalyzed recrystallization of goethite revisited, Environ. Sci. Technol., 10.1021/es503084u Hansel, 2003, Structural and compositional evolution of Cr/Fe solids after indirect chromate reduction by dissimilatory iron-reducing bacteria, Geochim. Cosmochim. Acta, 67, 401, 10.1016/S0016-7037(02)01081-5 Hansel, 2005, Competing Fe(II)-induced mineralization pathways of ferrihydrite, Environ. Sci. Technol., 39, 7147, 10.1021/es050666z Hansen, 2011, Enhanced biogeochemical cycling and subsequent reduction of hydraulic conductivity associated with soil-layer interfaces in the vadose zone, J. Environ. Qual., 40, 1941, 10.2134/jeq2011.0112 He, 2016, Sequestration of hexavalent chromium by Fe(II)/Fe(III) hydroxides: structural Fe(II) reactivity and PO43− effect, Chem. Eng. J., 283, 948, 10.1016/j.cej.2015.07.088 Hiemstra, 2007, Adsorption and surface oxidation of Fe(II) on metal (hydr)oxides, Geochim. Cosmochim. Acta, 71, 5913, 10.1016/j.gca.2007.09.030 Jeon, 2003, Kinetics and mechanisms for reactions of Fe(II) with iron (III) oxides, Environ. Sci. Technol., 37, 3309, 10.1021/es025900p Johnston, 2014, Mechanisms of chromate adsorption on hematite, Geochim. Cosmochim. Acta, 138, 146, 10.1016/j.gca.2014.04.030 Joshi, 2016, Anisotropic morphological changes in goethite during Fe 2+-catalyzed recrystallization, Environ. Sci. Technol., 50, 7315, 10.1021/acs.est.6b00702 Kantar, 2015, Cr(VI) removal from aqueous systems using pyrite as the reducing agent: Batch, spectroscopic and column experiments, J. Contam. Hydrol., 174, 28, 10.1016/j.jconhyd.2015.01.001 Katz, 2012, Electron small polarons and their mobility in iron (oxyhydr)oxide nanoparticles, Science, 337, 1200, 10.1126/science.1223598 Kotaś, 2000, Chromium occurrence in the environment and methods of its speciation, Environ. Pollut., 107, 263, 10.1016/S0269-7491(99)00168-2 Larese-Casanova, 2007, Fe(II) sorption on hematite: new insights base on spectroscopic measurements, Environ. Sci. Technol., 41, 471, 10.1021/es0617035 Lee, 2016, Study on nanophase iron oxyhydroxides in freshwater ferromanganese nodules from Green Bay, Lake Michigan, with implications for the adsorption of As and heavy metals, Am. Mineral., 101, 1986, 10.2138/am-2016-5729 Neumann, 2015, Atom exchange between aqueous Fe(II) and structural Fe in clay minerals, Environ. Sci. Technol. Newville, 2001, EXAFS analysis using FEFF and FEFFIT, J. Synchrotron Radiat., 8, 96, 10.1107/S0909049500016290 Newville, 1995, Analysis of multiple-scattering XAFS data using theoretical standards, Phys. B Condens. Matter, 208, 154, 10.1016/0921-4526(94)00655-F Nozik, 1996, Physical chemistry of semiconductor–liquid interfaces, J. Phys. Chem., 100, 13061, 10.1021/jp953720e Parsons, 2013, The impact of oscillating redox conditions: arsenic immobilisation in contaminated calcareous floodplain soils, Environ. Pollut., 178, 254, 10.1016/j.envpol.2013.02.028 Peterson, 1997, Differential redox and sorption of Cr (III/VI) on natural silicate and oxide minerals: EXAFS and XANES results, Geochim. Cosmochim. Acta, 61, 3399, 10.1016/S0016-7037(97)00165-8 Peterson, 1997, Surface passivation of magnetite by reaction with aqueous Cr(VI): XAFS and TEM results, Environ. Sci. Technol., 31, 1573, 10.1021/es960868i Pett-Ridge, 2005, Redox fluctuation structures microbial communities in a wet tropical soil, Appl. Environ. Microbiol., 71, 6998, 10.1128/AEM.71.11.6998-7007.2005 Porsch, 2011, FeII oxidation by molecular O2 during HCl extraction, Environ. Chem., 8, 190, 10.1071/EN10125 Poulson, 2005, Iron isotope exchange kinetics at the nanoparticulate ferrihydrite surface, Am. Mineral., 90, 758, 10.2138/am.2005.1802 Rai, 1989, Environmental chemistry of chromium, Sci. Total Environ., 86, 15, 10.1016/0048-9697(89)90189-7 Rosso, 2010, Connecting observations of hematite (α-Fe2O3) growth catalyzed by Fe(II), Environ. Sci. Technol., 44, 61, 10.1021/es901882a Sass, 1987, Solubility of amorphous chromium(III)-iron(III) hydroxide solid solutions, Inorg. Chem., 26, 2228, 10.1021/ic00261a013 Schwertmann, 2000 Sherman, 2005, Electronic structures of iron(III) and manganese(IV) (hydr)oxide minerals: thermodynamics of photochemical reductive dissolution in aquatic environments, Geochim. Cosmochim. Acta, 69, 3249, 10.1016/j.gca.2005.01.023 Shi, 2011, Removal of chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron, Water Res., 45, 886, 10.1016/j.watres.2010.09.025 Stewart, 2009, Stability of uranium incorporated into Fe (hydr)oxides under fluctuating redox conditions, Environ. Sci. Technol., 43, 4922, 10.1021/es803317w Stookey, 1970, Ferrozine—a new spectrophotometric reagent for iron, Anal. Chem., 42, 779, 10.1021/ac60289a016 Thompson, 2006, Iron-oxide crystallinity increases during soil redox oscillations, Geochim. Cosmochim. Acta, 70, 1710, 10.1016/j.gca.2005.12.005 Tomaszewski, 2016, The role of dissolved Fe(II) concentration in the mineralogical evolution of Fe (hydr)oxides during redox cycling, Chem. Geol., 10.1016/j.chemgeo.2016.06.016 Tronc, 1992, Transformation of ferric hydroxide into spinel by iron(II) adsorption, Langmuir, 8, 313, 10.1021/la00037a057 Williams, 2001, Kinetics of Cr(VI) reduction by carbonate green rust, Environ. Sci. Technol., 35, 3488, 10.1021/es010579g Williams, 2004, Spectroscopic evidence for Fe(II)−Fe(III) electron transfer at the iron oxide–water interface, Environ. Sci. Technol., 38, 4782, 10.1021/es049373g Wu, 2010, Stable Fe isotope fractionations produced by aqueous Fe(II)-hematite surface interactions, Geochim. Cosmochim. Acta., 71, 4249, 10.1016/j.gca.2010.04.060 Yang, 2010, Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions, Environ. Sci. Technol., 44, 5469, 10.1021/es1007565 Yang, 2012, Effects of redox cycling of iron in nontronite on reduction of technetium, Chem. Geol., 291, 206, 10.1016/j.chemgeo.2011.10.013 Yanina, 2008, Linked reactivity at mineral-water interfaces through bulk crystal conduction, Science, 320, 218, 10.1126/science.1154833 Yee, 2006, The rate of ferrihydrite transformation to goethite via the Fe(II) pathway, Am. Mineral., 91, 92, 10.2138/am.2006.1860 Zarzycki, 2015, Molecular dynamics study of Fe(II) adsorption, electron exchange, and mobility at goethite (α-FeOOH) surfaces, J. Phys. Chem. C, 119, 3111, 10.1021/jp511086r