The radiative transfer model for the greenhouse effect

Springer Science and Business Media LLC - Tập 79 Số 3 - Trang 489-525 - 2022
Claude Bardos1, Olivier Pironneau1
1LJLL, Université de Paris, Paris, France

Tóm tắt

AbstractRadiative transfer is at the heart of the mechanism to explain the greenhouse effect based on the partial infrared opacity of carbon dioxide, methane and other greenhouse gases in the atmosphere. In absence of thermal diffusion, the mathematical model consists of a first order integro-differential equation coupled with an integral equation for the light intensity and the temperature, in the atmosphere. We revisit this much studied system from a mathematical and numerical point of view. Existence and uniqueness and implicit solutions of the Milne problem for grey atmospheres are stated. Numerical simulations are given for grey and non-grey atmospheres and applied to calculate the effect of greenhouse gases. In the context of a transparent atmosphere for sunlight, it is found that by doubling the absorption coefficient in the infrared absorption range of $$\texttt {CO}_2$$ CO 2 the temperature decreases by 2%. On the other hand, the same changes but in the low infrared range of the sunlight leads to an increase of temperature in the atmosphere. Several computer codes were written to cross-validate the results. The authors conclude that the radiative transfer model without thermal diffusion for an atmosphere transparent to the incident sunlight is not capable of explaining the greenhouse effect due to the greenhouse gases. A decreasing temperature due to an increasing proportion of $$\texttt {CO}_2$$ CO 2 has been observed in the high atmosphere (D.W.J. Thomson et al, nature11579). In the lower atmosphere thermal diffusion and convection cannot be neglected and since the absorption coefficient are highly dependent on the temperature, a full ocean–atmosphere–biosphere climate model is required. Hence, driving conclusions from this study on climate change should be cautiously avoided and a review of the hypothesis of the radiative transfer argument commonly found in textbooks should be revisited.

Từ khóa


Tài liệu tham khảo

Bardos, C.: Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. Ecole Norm. Sup. 4, 185–233 (1970)

Bardos, C.: Sur un théorème de perturbation d’équations d’évolution; application. C. R. Acad. Sci. Paris Sér. A-B 265, A169–A172 (1967)

Bardos, C., Golse, F., Perthame, B.: The Rosseland approximation for the radiative transfer equations. Commun. Pure Appl. Math. 40, 691–721 (1987)

Bardos, C., Golse, F., Perthame, B., Sentis, R.: The nonaccretive radiative transfer equations: existence of solutions and Rosseland approximation. J. Funct. Anal. 77, 434–460 (1988)

Bardos, C., Santos, R.: Sentis: Diffusion Approximation and computation of the critical size. Trans. Am. Math. Soc. 284(2) 1984 pp. 617–649

Bensoussan, A., Lions, J.-L., Papanicolaou, G.C.: Boundary layers and homogenization of transport processes. Publ. Res. Inst. Math. Sci. 15(1), 53–157 (1979)

Case, K.M.: Linear Transport Theory Addison Wesley, Reading. (1967)

Chandrasekhar, S.: Radiative Transfer. Clarendon Press, Oxford (1950)

Charnay, B.: ARIEL School www.iap.fr/useriap/beaulieu/ARIEL/ARIEL-School2019-index.html, Biarritz (2019)

Cornet, C.: Transfert radiatif dans une atmosphère tridimensionnelle : modélisation et applications en télédétection. Mémoire HdR. LAb. Optique atmosphérique, Univ. Lille. (2015)

Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology. Tome 3 vol 9. Chap. 21 , Springer verlag, New-York (2000)

Davis, T.A.: Algorithm 832. ACM Trans. Math. Software. 30(2), 196–199 (2004)

Dufresne, J.-L., Eymet, V., Crevoisier, C., Grandpeix, J.-Y.: Greenhouse Effect: The Relative Contributions of Emission Height and Total Absorption. J. Clim. Am. Meteorol. Soc. 33(9), 3827–3844 (2020). https://doi.org/10.1175/JCLI-D-19-0193.1. arXiv:hal-02531970

Fowler, A.: Mathematical Geoscience. Springer Verlag, New-York (2011)

Ghattassi, M., Huo, X., Masmoudi, N.: On the diffusive limit of radiative heat transfert system I: Well prepared initial and boundary condition ArXiv:2007.13209v [math.AP] 26 Jul. 2020

Golse, F., Perthame, B., Sentis, R.: The nonaccretive radiative transfer equations: existence of solutions and Rosseland approximation. J. Funct. Anal. 77(2), 434–460 (1988)

Grandpeix, J.-Y., Dufresne, J.L.: Ecole d’été de physique de grenoble, energie et rayonnement(2011). https://www.lmd.jussieu.fr/~jyg/e2phy_2011_jyg.pdf

Gros, E.: Modélisation DART du transfert radiatif Terre-Atmosphère pour simuler les bilans radiatif, images de télédétection et mesures LIDAR des paysages terrestres. HAL Id: tel-00841795

Le Hardy, D., Favennec, Y., Rousseau, B., Hecht, F.: Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method. J. Comput. Phys. 334, 541–572 (2017)

Lei, W., Guo, Y.: Geometric Correction for Diffusive Expansion of Steady Neutron Transport Equation. Commun. Math. Phys. 336, 1473–1553 (2015)

Hecht, F.: New development in FreeFem++. J. Numer. Math., 20, pp. 251-265. (2012), (see also www.freefem.org)

Kanschat, G., Meinköhn, E., Rannacher, R., Wehrse, R. (eds.): Numerical Methods in Multidimensional Radiative Transfer. Springer Verlag, Berlin (2000)

Kaper, H., Hengler, H.: Mathematics & Climate. SIAM publications, Philadelphia (2013)

McCaa, J.R., Rothstein, M., Eaton, B.E., Rosinski, J.M., Kluzek, E., Vertenstein, M.: User’s Guide to the NCAR Community Atmosphere Model (CAM 3.0)

Mercier, B.: application of accretive operators theory to the radiative transfer equations. SIAM J. Math. Anal. 18(2) (March 1987)

ModestModest, M.F.: Radiative Heat transfer, 3rd edn. Academic Press, Cambridge (2013)

Pawlak, D., Clothiaux, E., Modest, M., Cole, J.: Full-Spectrum Correlated-k Distribution for Shortwave Atmospheric Radiative Transfer. J. Atm. Sciences. The American Meteorological Society. Vol 61, p2588-2601. (Nov 2004)

Pomraning, G.: The equations of Radiation Hydrodynamics. Pergamon Press, New-York (1973)

Porzio, M.M., Lopez-Pouso, O.: Application of accretive operators theory to evolutive combined conduction, convection and radiation Rev. Mat. Iberoamericana 20, 257–275 (2004)

Stephens, G.L., O’Brien, D., Webster, P.J., Pilewski, P., Kato, S., Li, Jui-lin: The albedo of Earth Reviews of Geophysics. Review article. https://doi.org/10.1002/2014RG000449. (2014)

Weinberg and Wigner: The Physical Theory if Neutrons Chain Reactors , The University of Chicago Press, (1958)

Wu, L.: Boundary layer of transport equation with in-flow boundary. Arch. Ration. Mech. Anal. 235(3), 2085–2169 (2020)