The quantum realization of Arnold and Fibonacci image scrambling

Nan Jiang1, Wen-Ya Wu1, Wei Luo1
1College of Computer, Beijing University of Technology, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

Vlatko, V., Adriano, B., Artur, E.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

Caraiman, S., Manta, V. Image processing using quantum computing. International conference on 16th System Theory, Control and Computing (ICSTCC), pp. 1–6 (2012)

Beach, G., Lomont C., Cohen C. Quantum image processing (QuIP). 32nd Applied Imagery Pattern Recognition, Workshop, pp. 39–44 (2003)

Venegas-Andraca S.E., Bose, S. Storing, processing and retrieving an image using quantum mechanics. Proceedings of the SPIE conference on Quantum Information and Computation, pp. 137–147 (2003)

Latorre, J.I. Image compression and entanglement. arXiv:quantph/0510031 (2005)

Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum. Inf. Process. 10(1), 63–84 (2011)

Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum system. J. Quantum. Inf. Process. 9(1), 1–11 (2010)

Fijany, A., Williams, C. Quantum wavelet transform: fast algorithm and complete circuits. arXiv:quant-ph/9809004 (1998)

Klappenecker, A., Roetteler, M. Discrete cosine transforms on quantum computers. IEEER8-EURASIP Symposium on Image and Signal Processing and Analysis (ISPA01), Pula, Croatia, pp. 464–468 (2001)

Tseng, C., Hwang, T. Quantum circuit design of $$8\times 8$$ 8 × 8 discrete cosine transforms using its fast computation flow graph. IEEE International Symposium on Circuits and Systems. pp. 828–831 (2005)

Lomont, C. Quantum convolution and quantum correlation algorithms are physically impossible. arXiv:quant-ph/0309070 (2003)

Zhang, W., Gao, F., Liu, B.: A watermark strategy for quantum images based on quantum fourier transform. Quantum. Inf. Process. 12(4), 793–803 (2013)

Zhang, W., Gao, F., Liu, B.: A quantum watermark protocol. Int. J. Theory. Phys. 52, 504–513 (2013)

Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)

Honglian, L., Jing, F.: Generalization of Arnold transform—FAN transform and its application in image scrambling encryption. Recent. Adv. CSIE, LNEE. 128, 511–516 (2012)

Zhang, M.R., Shao, G.C., Yi, K.C.: T-matrix and its applications in image processing. Electron. Lett. 40(25), 1583–1584 (2004)

Sun, Y.-S., Shyu, H.-C.: Image scrambling through a fractional $$GF(q^{n})$$ G F ( q n ) composite domain. Electron. Lett. 37(11), 685–687 (2001)

Joo, K.S., Bose, T.: Two-dimensional periodically shift variant digital filters. IEEE Trans. Circuits. Syst. Video. Technol. 6(1), 97–107 (1996)

Dalhoum, A.L.A., Mahafzah, B.A., Awwad, A.A.: Digital image scrambling using 2D cellular automata dalhoum. IEEE. MultiMed. 19(4), 28–36 (2012)

Li, S., Li, C., Lo, K.-T., Chen, G.: Cryptanalysis of an image scrambling scheme without bandwidth expansion. IEEE Trans. Circuits. Syst. Video. Technol. 18(3), 338–349 (2008)

Peano, G.: Sur une courbe qui remplit toute une aire plane. Math. Ann. 36(1), 157–160 (1890)

Zhang, L., et al.: Computational intelligence and security. Springer, Berlin (2005)

Zhu L., et al.: A novel algorithm for scrambling digital image based on cat chaotic mapping. International Conference of Intelligent Information Hiding and Multimedia Signal Processing, IEEE CS Press, pp. 601–604 (2006)

Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

Arnold, V.I., Avez, A.: Ergodic problems of classical mechanics. Benjamin, New York (1968)

Dyson, F.J., Falk, H.: Period of a discrete cat mapping. Am. Math. Mon. 99(7), 603–614 (1992)