The quantitative isoperimetric inequality and related topics
Tóm tắt
We present some recent stability results concerning the isoperimetric inequality and other related geometric and functional inequalities. The main techniques and approaches to this field are discussed.
Tài liệu tham khảo
Acerbi, E., Fusco, N., Morini, M.: Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322, 515–557 (2013)
Aleksandrov, A.D.: Uniqueness theorems for surfaces in the large. V (Russian). Vestnik Leningr. Univ. 13, 5–8 (1958)
Almgren, F.: Optimal isoperimetric inequalities. Indiana Univ. Math. J. 35, 451–547 (1986)
Almgren, F.J., Lieb, E.H.: Symmetric decreasing rearrangement is sometimes continuous. J. Am. Math. Soc. 2, 683–773 (1989)
Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)
Alvino, A., Ferone, V., Nitsch, C.: A sharp isoperimetric inequality in the plane. J. Eur. Math. Soc. 13, 185–206 (2011)
Ambrosio, L., De Philippis, G., Martinazzi, L.: Gamma-convergence of nonlocal perimeter functionals. Manuscr. Math. 134, 377–403 (2011)
Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, New York (2000)
Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)
Barchiesi, M., Brancolini, A., Julin, V.: Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality. Ann. Probab. arXiv:1409.2106v1 (2015, to appear)
Barchiesi, M., Cagnetti, F., Fusco, N.: Stability of the Steiner symmetrization of convex sets. J. Eur. Math. Soc. 15, 1245–1278 (2013)
Barchiesi, M., Capriani, G.M., Fusco, N., Pisante, G.: Stability of Pólya–Szegö inequality for log-concave functions. J. Funct. Anal. 267, 2264–2297 (2014)
Bernstein, F.: Über die isoperimetriche Eigenschaft des Kreises auf der Kugeloberflache und in der Ebene. Math. Ann. 60, 117–136 (1905)
Bhattacharya, T.: ome observations on the first eigenvalue of the \(p\)-Laplacian and its connections with asymmetry. Electron. J. Differ. Equ. 35, 15 (2001)
Bhattacharya, T., Weitsman, A.: Estimates for Greens function in terms of asymmetry. AMS Contemp. Math. Ser. 221, 31–58 (1999)
Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100, 18–24 (1991)
Bliss, G.A.: An integral inequality. J. Lond. Math. Soc. 5, 40–46 (1930)
Bögelein, V., Duzaar, F., Fusco, N.: A sharp quantitative isoperimetric inequality in higher codimension. Rend. Lincei Mat. Appl. 26, 309–362 (2015)
Bögelein, V., Duzaar, F., Fusco, N.: A quantitative isoperimetric inequality on the sphere. http://cvgmt.sns.it/paper/2146/ (2013)
Bombieri, E.: Regularity theory for almost minimal currents. Arch. Ration. Mech. Anal. 78, 99–130 (1982)
Bonnesen, T.: Über die isoperimetrische Defizit ebener Figuren. Math. Ann. 91, 252–268 (1924)
Borell, C.: The Brunn–Minkowski inequality in Gauss space. Invent. Math. 30, 207–216 (1975)
Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.) Optimal Control and Partial Differential Equations, pp. 429–455. IOS Press, Amsterdam (2001)
Brasco, L., De Philippis, G., Velichkov, B.: Faber–Krahn inequalities in sharp quantitative form. Duke Math. J. 164, 1777–1831 (2015)
Brasco, L., Pratelli, A.: Sharp stability of some spectral inequalities. Geom. Funct. Anal. 22, 107–135 (2012)
Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44, 375–417 (1991)
Brezis, H., Lieb, E.H.: Sobolev inequalities with remainder terms. J. Funct. Anal. 62, 73–86 (1985)
Brothers, J., Ziemer, W.: Minimal rearrangements of Sobolev functions. J. Reine. Angew. Math. 384, 153–179 (1988)
Burago, Y.D., Zalgaller, V.A.: Geometric Inequalities. Springer, Berlin (1988)
Cabré, X.: Partial differential equations, geometry and stochastic control (Catalan). Butl. Soc. Catalana Mat. 15, 7–27 (2000)
Caffarelli, L., Roquejoffre, J.M., Savin, O.: Non-local minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)
Caffarelli, L., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 41, 203–240 (2011)
Cagnetti, F., Colombo, M., De Philippis, G., Maggi, F.: Rigidity of equality cases in Steiner’s perimeter inequality. Anal. PDE 7, 1535–1593 (2014)
Caputo, M.C., Guillen, N.: Regularity for non-local almost minimal boundaries and applications. arXiv:1003.2470 (2010)
Carlen, E.A., Figalli, A.: Stability for a GNS inequality and the log-HLS inequality, with application to the critical mass Keller–Segel equation. Duke Math. J. 162, 579–625 (2013)
Carlen, E.A., Kerce, C.: On the cases of equality in Bobkov’s inequality and Gaussian rearrangement. Calc. Var. Partial Differ. Equ. 13, 1–18 (2001)
Chavel, I.: Isoperimetric Inequalities. Cambridge Tracts in Mathematics, vol. 145. Cambridge University Press, Cambridge (2001)
Chlebík, M., Cianchi, A., Fusco, N.: The perimeter inequality under Steiner symmetrization: cases of equality. Ann. Math. 162, 525–555 (2005)
Cianchi, A.: Sharp Morrey–Sobolev inequalities and the distance from extremals. Trans. Am. Math. Soc. 360, 4335–4347 (2008)
Cianchi, A., Esposito, L., Fusco, N., Trombetti, C.: A quantitative Pólya–Szegö principle. J. Reine Angew. Math. 614, 153–189 (2008)
Cianchi, A., Fusco, N.: Functions of bounded variation and rearrangements. Arch. Ration. Mech. Anal. 165, 1–40 (2002)
Cianchi, A., Fusco, N.: Dirichlet integrals and Steiner asymmetry. Bull. Sci. Math. 130, 675–696 (2006)
Cianchi, A., Fusco, N., Maggi, F., Pratelli, A.: The sharp Sobolev inequality in quantitative form. J. Eur. Math. Soc. 11, 1105–1139 (2009)
Cianchi, A., Fusco, N., Maggi, F., Pratelli, A.: On the isoperimetric deficit in the Gauss space. Am. J. Math. 133, 131–186 (2011)
Cicalese, M., Leonardi, G.P.: A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ration. Mech. Anal. 206, 617–643 (2012)
Cicalese, M., Leonardi, G.P.: Best constants for the isoperimetric inequality in quantitative form. J. Eur. Math. Soc. 15, 1101–1129 (2013)
Cicalese, M., Leonardi, G.P., Maggi, F.: Sharp stability inequalities for planar double bubbles. arXiv:1211.3698v2 (2012)
Cicalese, M., Leonardi, G.P., Maggi, F.: Improved convergence theorems for bubble clusters. I. The planar case. arXiv:1409.6652v2 (2014)
Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities. Adv. Math. 182, 307–332 (2004)
Dacorogna, B., Pfister, C.E.: Wulff theorem and best constant in Sobolev inequality. J. Math. Pures Appl. 71, 97–118 (1992)
David, G., Semmes, S.: Quasiminimal surfaces of codimension 1 and John domains. Pac. J. Math. 183, 213–277 (1998)
Dávila, J.: On an open question about functions of bounded variation. Calc. Var. Partial Differ. Equ. 15, 519–527 (2002)
De Giorgi, E.: Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita (Italian). Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) 5, 33–44 (1958)
Duzaar, F., Steffen, K.: Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. J. Reine Angew. Math. 546, 73–138 (2002)
Ehrhard, A.: Symétrisation dans l’espace de Gauss. Math. Scand. 53, 281–301 (1983)
Eldan, R.: A two-sided estimate for the Gaussian noise stability deficit. Invent. Math. 201, 561–624 (2015)
Eldan, R., Klartag, B.: Dimensionality and stability. Ann. Sc. Norm. Super. Pisa Cl. Sci. 13, 975–1007 (2014)
Esposito, L., Fusco, N., Trombetti, C.: A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4, 619–651 (2005)
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press Inc, Boca Raton (1992)
Faber, C.: Beweis dass unter allen homogen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsber, pp. 169–172 . Bayer. Akad. der Wiss. Math.-Phys., Munich (1923)
Ferone, A., Volpicelli, R.: Minimal rearrangements of Sobolev functions: a new proof. Ann. Inst. H. Poincaré Anal. Non Linéaire 20, 333–339 (2003)
Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336, 441–507 (2015)
Figalli, A., Indrei, E.: A sharp stability result for the relative isoperimetric inequality inside convex cones. J. Geom. Anal. 23, 938–969 (2013)
Figalli, A., Jerison, D.: Quantitative stability for sumsets in \(\mathbb{R}^n\). J. Eur. Math. Soc. 17, 1079–1106 (2015)
Figalli, A., Maggi, F., Pratelli, A.: A note on Cheeger sets. Proc. Am. Math. Soc. 137, 2057–2062 (2009a)
Figalli, A., Maggi, F., Pratelli, A.: A refined Brunn–Minkowski inequality for convex sets. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2511–2519 (2009b)
Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182, 167–211 (2010)
Figalli, A., Maggi, F., Pratelli, A.: Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation. Adv. Math. 242, 80–101 (2013)
Fonseca, I.: The Wulff theorem revisited. Proc. R. Soc. Lond. 432, 125–145 (1991)
Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinb. 119A, 125–136 (1991)
Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430 (2008)
Fuglede, B.: Stability in the isoperimetric problem for convex or nearly spherical domains in \(\mathbb{R}^n\). Trans. Am. Math. Soc. 314, 619–638 (1989)
Fusco, N., Gelli, M.S., Pisante, G.: On a Bonnesen type inequality involving the spherical deviation. J. Math. Pures Appl. 98, 616–632 (2012)
Fusco, N., Julin, V.: A strong form of the quantitative isoperimetric inequality. Calc. Var. Partial Differ. Equ. 50, 925–937 (2014)
Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative Sobolev inequality for functions of bounded variation. J. Funct. Anal. 244, 315–341 (2007)
Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. 168, 941–980 (2008)
Fusco, N., Maggi, F., Pratelli, A.: Stability estimates for certain Faber–Krahn, isocapacitary and Cheeger inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8, 51–71 (2009)
Fusco, N., Millot, V., Morini, M.: A quantitative isoperimetric inequality for fractional perimeters. J. Funct. Anal. 261, 697–715 (2011)
Giaquinta, M., Giusti, E.: Quasi-minima. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 79–107 (1984)
Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)
Grisvard, P.: Elliptic Problems in Non Smooth Domains. Monongraphs and Studies in Mathematics. Pitman, Boston (1985)
Hall, R.R.: A quantitative isoperimetric inequality in \(n\)-dimensional space. J. Reine Angew. Math. 428, 161–176 (1992)
Hall, R.R., Hayman, W.K.: A problem in the theory of subordination. J. Anal. Math. 60, 99–111 (1993)
Hall, R.R., Hayman, W.K., Weitsman, A.W.: On asymmetry and capacity. J. Anal. Math. 56, 87–123 (1991)
Hansen, W., Nadirashvili, N.: Isoperimetric inequalities in potential theory. In: Proceedings from the International Conference on Potential Theory (Amersfoort, 1991). Potential Analysis, vol. 3, pp. 1–14 (1994)
Hurwitz, A.: Sur le problème des isopérimètres. C. R. Acad. Sci. Paris 132, 401–403 (1901)
Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics, vol. 1150. Springer, Berlin (1985)
Kinnunen, J., Korte, R., Lorent, A., Shanmugalingam, N.: Regularity of sets with quasiminimal boundary surfaces in metric spaces. J. Geom. Anal. 23, 1607–1640 (2013)
Kohler-Jobin, M.T.: Une méthode de comparaison isopérimétrique de fonctionnelles de domaines de la physique mathématique. I. Une démonstration de la conjecture isopérimétrique \(P\lambda ^2\ge \pi j_0^4/2\) de Polýa et Szegö. Z. Angew. Math. Phys. 29, 757–766 (1978)
Kohler-Jobin, M.T.: Symmetrization with equal Dirichlet integrals. SIAM J. Math. Anal. 13, 153–161 (1982)
Krahn, E.: Über Minimaleigenschaft des Kugel in drei und mehr Dimensionen. Acta Comment. Univ. Tartu Math. A9, 1–44 (1926)
Leoni, G.: A First Course in Sobolev Spaces. Graduate Studies in Mathematics. American Mathematical Society, Providence (2009)
McCann, R.J.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80, 309–323 (1995)
Maggi, F.: Some methods for studying stability in isoperimetric type problems. Bull. Am. Math. Soc. 45, 367–408 (2008)
Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012)
Maggi, F., Ponsiglione, M., Pratelli, A.: Quantitative stability in the isodiametric inequality via the isoperimetric inequality. Trans. Am. Math. Soc. 366, 1141–1160 (2014)
Maggi, F., Villani, C.: Balls have the worst best Sobolev inequalities. J. Geom. Anal. 15, 83–121 (2005)
Maz’ya, V., Shaposhnikova, T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195, 230–238 (2002) (Erratum, J. Funct. Anal. 201, 298–300 (2003))
Melas, A.: The stability of some eigenvalue estimates. J. Differ. Geom. 36, 19–33 (1992)
Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite-Dimensional Normed Spaces. With an Appendix by M. Gromov. Lecture Notes in Mathematics, vol. 1200. Springer, Berlin (1986)
Mossel, E., Neeman, J.: Robust dimension free isoperimetry in Gaussian space. Ann. Probab. 43, 971–991 (2015)
Nadirashvili, N.: Conformal maps and isoperimetric inequalities for eigenvalues of the Neumann problem. In: Proceedings of the Ashkelon Workshop on Complex Function Theory, pp. 197–201 (1996), Israel Mathematical Conference Proceedings, vol. 11. Bar-Ilan University, Ramat Gan (1997)
Neumayer, R.: A strong form of the quantitative Wulff inequality. arXiv:1503.06705 (2015)
Osserman, R.: The isoperimetric inequality. Bull. Am. Math. Soc. 84, 1182–1238 (1978)
Osserman, R.: Bonnesen-style isoperimetric inequalities. Am. Math. Mon. 86, 1–29 (1979)
Rajala, K., Zhong, X.: Bonnesen’s inequality for John domains in \(\mathbb{R}^n\). J. Funct. Anal. 263, 3617–3640 (2012)
Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin (1996)
Schmidt, E.: Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raum jeder Dimensionszahl. Math. Z. 49, 1–109 (1943)
Segal, A.: Remark on stability of Brunn–Minkowski and isoperimetric inequalities for convex bodies. In: Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 2050, pp. 381-391. Springer, Heidelberg (2012)
Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983)
Strutt, J.W. (Lord Rayleigh): The Theory of Sound. 2nd edn. Dover Publications, New York (1945)
Sudakov, V.N., Cirel’son, B.S.: Extremal properties of half-spaces for spherically invariant measures (Russian). In: Problems in the Theory of Probability Distributions, II. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) vol. 41, pp. 14–24 (1974)
Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)
Tamanini, I.: Regularity results for almost minimal oriented hypersurfaces. Quaderni del Dipartimento di Matematica dell’Università di Lecce, Lecce. http://cvgmt.sns.it/paper/1807/ (1984)
Van Schaftingen, J., Willem, M.: Set transformations, symmetrizations and isoperimetric inequalities, Nonlinear analysis and applications to physical sciences, 135–152. Springer Italia, Milan (2004)