The purification of AISI 420 stainless steel in laser solid forming
Tài liệu tham khảo
Huang, 2007
de Lima, 2014, Microstructure and mechanical behavior of laser additive manufactured AISI 316 stainless steel stringers, Mater. Des., 55, 526, 10.1016/j.matdes.2013.10.016
Carroll, 2015, Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing, Acta Mater., 87, 309, 10.1016/j.actamat.2014.12.054
Puppala, 2014, Evaluation of fracture toughness and impact toughness of laser rapid manufactured Inconel-625 structures and their co-relation, Mater. Des., 59, 509, 10.1016/j.matdes.2014.03.013
Bi, 2014, Microstructure and tensile properties of superalloy IN100 fabricated by micro-laser aided additive manufacturing, Mater. Des., 60, 401, 10.1016/j.matdes.2014.04.020
Zhu, 2015, The anisotropy of laser melting deposition additive manufacturing Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy, Mater. Des., 67, 538, 10.1016/j.matdes.2014.11.001
Zhang, 2013, Oxide films in laser additive manufactured Inconel 718, Acta Mater., 61, 6562, 10.1016/j.actamat.2013.07.039
Liu, 2010, Microstructures and mechanical properties of laser solid formed nickle base superalloy Inconel 718 prepared in different atmospheres, Acta Metall. Sin., 46, 1047, 10.3724/SP.J.1037.2010.00046
Das, 2003, Physical aspects of process control in selective laser sintering of metals, Adv. Eng. Mater., 5, 701, 10.1002/adem.200310099
Moore, 2013, The effect of inclusions on the fracture toughness of local brittle zones in the HAZ of girth welded line pipe
Spriestersbach, 2014, Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime, Int. J. Fatigue, 64, 114, 10.1016/j.ijfatigue.2014.03.003
Yamada, 1987, Evaluation of non-metallic inclusions of steels used for rolling bearings from fracture surface by rotating ring fatigue fracture test, Wear, 118, 305, 10.1016/0043-1648(87)90074-3
Zheng, 2013, Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion, Corros. Sci., 67, 20, 10.1016/j.corsci.2012.09.044
Krauss, 1990, Microstructures, processing, and properties of steels, Volume 1, 211
Washko, 1990, Wrought stainless steels, Volume 1, 1303
Lefebvre, 2013, The effect of oxygen, nitrogen and carbon on the microstructure and compression properties of titanium foams, J. Mater. Res., 28, 2453, 10.1557/jmr.2013.114
Lu, 2004, Sensitivity of Marangoni convection and weld shape variations to welding parameters in O2-Ar shielded GTA welding, Scr. Mater., 51, 271, 10.1016/j.scriptamat.2004.03.004
Zhao, 2010, The effect of oxygen on transitional Marangoni flow in laser spot welding, Acta Mater., 58, 6345, 10.1016/j.actamat.2010.07.056
Song, 2014, Influence of forming atmosphere on the deposition characteristics of 2Cr13 stainless steel during laser solid forming, J. Mater. Process. Technol., 214, 701, 10.1016/j.jmatprotec.2013.09.023
Song, 2015, Formation and modeling of vertical outside wall of components inclining inward in laser solid forming, Acta Metall. Sin., 51, 753
Liu, 2015, Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder, Mater. Des., 87, 797, 10.1016/j.matdes.2015.08.086
Banas, 1983, 143
Hu, 2005, Fusion zone purification of metal containing oxide inclusions via laser welding, J. Mater. Sci., 40, 4125, 10.1007/s10853-005-2569-4
Babu, 1999, Effect of high energy density welding processes on inclusion and microstructure formation in steel welds, Sci. Technol. Weld. Join., 4, 63, 10.1179/136217199101537581
Cao, 2006, A review of laser welding techniques for magnesium alloys, J. Mater. Process. Technol., 171, 188, 10.1016/j.jmatprotec.2005.06.068
Baghjari, 2013, Effects of pulsed Nd:YAG laser welding parameters and subsequent post-weld heat treatment on microstructure and hardness of AISI 420 stainless steel, Mater. Des., 43, 1, 10.1016/j.matdes.2012.06.027
Köse, 2014, The effect of preheat & post weld heat treatment on the laser weldability of AISI 420 martensitic stainless steel, Mater. Des., 64, 221, 10.1016/j.matdes.2014.07.044
Grong, 1986, A model for the silicon-manganese deoxidation of steel weld metals, Metall. Mater. Trans. A, 17, 1797, 10.1007/BF02817277
Kuwana, 1993, Oxygen absorption and oxide inclusions in Fe–Cr weld metal, Weld. Int., 7, 365, 10.1080/09507119309548407
Sato, 1995, Oxygen absorption in iron and steel weld metal, ISIJ Int., 35, 1162, 10.2355/isijinternational.35.1162
Wagner, 1958, Passivity during the oxidation of silicon at elevated temperatures, J. Appl. Phys., 29, 1295, 10.1063/1.1723429
Wagner, 1965, Passivity and inhibition during the oxidation of metals at elevated temperatures, Corros. Sci., 5, 751, 10.1016/S0010-938X(65)80003-8
Ratto, 2000, Mechanism of oxidation/deoxidation of liquid silicon: theoretical analysis and interpretation of experimental surface tension data, J. Cryst. Growth, 217, 233, 10.1016/S0022-0248(00)00496-6
Ratto, 2001, Oxidation of metals with highly reactive vapors: extension of Wagner theory, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 32, 903, 10.1007/s11663-001-0076-9
Arato, 2005, Composition transients and saturation phenomena at a liquid metal–vapour interface: an advanced theoretical approach and an application to the oxidation of tin in a vacuum, J. Cryst. Growth, 282, 525, 10.1016/j.jcrysgro.2005.05.043
Arato, 2005, Oxygen transport phenomena at the liquid metal–vapour interface, J. Mater. Sci., 40, 2133, 10.1007/s10853-005-1904-0
Arato, 2008, The effective oxygen pressure of liquid binary alloys, Surf. Sci., 602, 349, 10.1016/j.susc.2007.10.026
Arato, 2012, Surface oxidability of pure liquid metals and alloys, Appl. Surf. Sci., 258, 2686, 10.1016/j.apsusc.2011.10.118