The purification of AISI 420 stainless steel in laser solid forming

Materials and Design - Tập 89 - Trang 1035-1040 - 2016
Menghua Song1, Xin Lin1, Fenggang Liu1, Haiou Yang1, Weidong Huang1
1State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China

Tài liệu tham khảo

Huang, 2007 de Lima, 2014, Microstructure and mechanical behavior of laser additive manufactured AISI 316 stainless steel stringers, Mater. Des., 55, 526, 10.1016/j.matdes.2013.10.016 Carroll, 2015, Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing, Acta Mater., 87, 309, 10.1016/j.actamat.2014.12.054 Puppala, 2014, Evaluation of fracture toughness and impact toughness of laser rapid manufactured Inconel-625 structures and their co-relation, Mater. Des., 59, 509, 10.1016/j.matdes.2014.03.013 Bi, 2014, Microstructure and tensile properties of superalloy IN100 fabricated by micro-laser aided additive manufacturing, Mater. Des., 60, 401, 10.1016/j.matdes.2014.04.020 Zhu, 2015, The anisotropy of laser melting deposition additive manufacturing Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy, Mater. Des., 67, 538, 10.1016/j.matdes.2014.11.001 Zhang, 2013, Oxide films in laser additive manufactured Inconel 718, Acta Mater., 61, 6562, 10.1016/j.actamat.2013.07.039 Liu, 2010, Microstructures and mechanical properties of laser solid formed nickle base superalloy Inconel 718 prepared in different atmospheres, Acta Metall. Sin., 46, 1047, 10.3724/SP.J.1037.2010.00046 Das, 2003, Physical aspects of process control in selective laser sintering of metals, Adv. Eng. Mater., 5, 701, 10.1002/adem.200310099 Moore, 2013, The effect of inclusions on the fracture toughness of local brittle zones in the HAZ of girth welded line pipe Spriestersbach, 2014, Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime, Int. J. Fatigue, 64, 114, 10.1016/j.ijfatigue.2014.03.003 Yamada, 1987, Evaluation of non-metallic inclusions of steels used for rolling bearings from fracture surface by rotating ring fatigue fracture test, Wear, 118, 305, 10.1016/0043-1648(87)90074-3 Zheng, 2013, Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion, Corros. Sci., 67, 20, 10.1016/j.corsci.2012.09.044 Krauss, 1990, Microstructures, processing, and properties of steels, Volume 1, 211 Washko, 1990, Wrought stainless steels, Volume 1, 1303 Lefebvre, 2013, The effect of oxygen, nitrogen and carbon on the microstructure and compression properties of titanium foams, J. Mater. Res., 28, 2453, 10.1557/jmr.2013.114 Lu, 2004, Sensitivity of Marangoni convection and weld shape variations to welding parameters in O2-Ar shielded GTA welding, Scr. Mater., 51, 271, 10.1016/j.scriptamat.2004.03.004 Zhao, 2010, The effect of oxygen on transitional Marangoni flow in laser spot welding, Acta Mater., 58, 6345, 10.1016/j.actamat.2010.07.056 Song, 2014, Influence of forming atmosphere on the deposition characteristics of 2Cr13 stainless steel during laser solid forming, J. Mater. Process. Technol., 214, 701, 10.1016/j.jmatprotec.2013.09.023 Song, 2015, Formation and modeling of vertical outside wall of components inclining inward in laser solid forming, Acta Metall. Sin., 51, 753 Liu, 2015, Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder, Mater. Des., 87, 797, 10.1016/j.matdes.2015.08.086 Banas, 1983, 143 Hu, 2005, Fusion zone purification of metal containing oxide inclusions via laser welding, J. Mater. Sci., 40, 4125, 10.1007/s10853-005-2569-4 Babu, 1999, Effect of high energy density welding processes on inclusion and microstructure formation in steel welds, Sci. Technol. Weld. Join., 4, 63, 10.1179/136217199101537581 Cao, 2006, A review of laser welding techniques for magnesium alloys, J. Mater. Process. Technol., 171, 188, 10.1016/j.jmatprotec.2005.06.068 Baghjari, 2013, Effects of pulsed Nd:YAG laser welding parameters and subsequent post-weld heat treatment on microstructure and hardness of AISI 420 stainless steel, Mater. Des., 43, 1, 10.1016/j.matdes.2012.06.027 Köse, 2014, The effect of preheat & post weld heat treatment on the laser weldability of AISI 420 martensitic stainless steel, Mater. Des., 64, 221, 10.1016/j.matdes.2014.07.044 Grong, 1986, A model for the silicon-manganese deoxidation of steel weld metals, Metall. Mater. Trans. A, 17, 1797, 10.1007/BF02817277 Kuwana, 1993, Oxygen absorption and oxide inclusions in Fe–Cr weld metal, Weld. Int., 7, 365, 10.1080/09507119309548407 Sato, 1995, Oxygen absorption in iron and steel weld metal, ISIJ Int., 35, 1162, 10.2355/isijinternational.35.1162 Wagner, 1958, Passivity during the oxidation of silicon at elevated temperatures, J. Appl. Phys., 29, 1295, 10.1063/1.1723429 Wagner, 1965, Passivity and inhibition during the oxidation of metals at elevated temperatures, Corros. Sci., 5, 751, 10.1016/S0010-938X(65)80003-8 Ratto, 2000, Mechanism of oxidation/deoxidation of liquid silicon: theoretical analysis and interpretation of experimental surface tension data, J. Cryst. Growth, 217, 233, 10.1016/S0022-0248(00)00496-6 Ratto, 2001, Oxidation of metals with highly reactive vapors: extension of Wagner theory, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 32, 903, 10.1007/s11663-001-0076-9 Arato, 2005, Composition transients and saturation phenomena at a liquid metal–vapour interface: an advanced theoretical approach and an application to the oxidation of tin in a vacuum, J. Cryst. Growth, 282, 525, 10.1016/j.jcrysgro.2005.05.043 Arato, 2005, Oxygen transport phenomena at the liquid metal–vapour interface, J. Mater. Sci., 40, 2133, 10.1007/s10853-005-1904-0 Arato, 2008, The effective oxygen pressure of liquid binary alloys, Surf. Sci., 602, 349, 10.1016/j.susc.2007.10.026 Arato, 2012, Surface oxidability of pure liquid metals and alloys, Appl. Surf. Sci., 258, 2686, 10.1016/j.apsusc.2011.10.118