The pulsed high magnetic field facility and scientific research at Wuhan National High Magnetic Field Center
Tóm tắt
Tài liệu tham khảo
2003, High Magnetic Fields: Science and Technology
2016, Status and development of pulsed magnets at the NHMFL pulsed field facility, IEEE Trans. Appl. Supercond., 26, 4300905, 10.1109/tasc.2016.2515982
2013, Magnet-technology development at the Dresden High Magnetic Field Laboratory, J. Low Temp. Phys., 170, 447, 10.1007/s10909-012-0764-7
2015, Dichotomy between the hole and electron behavior in multiband superconductor FeSe probed by ultrahigh magnetic fields, Phys. Rev. Lett., 115, 219902, 10.1103/physrevlett.115.219902
2010, Progress in the development of the Wuhan high magnetic field center, J. Low Temp. Phys., 159, 374, 10.1007/s10909-009-0064-z
2013, Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center, Rev. Sci. Instrum., 84, 125112, 10.1063/1.4849195
2014, Short and long pulse high magnetic field facility at the Wuhan National High Magnetic Field Center, IEEE Trans. Appl. Supercond., 24, 1, 10.1109/tasc.2013.2287401
2014, Design and test of a 90-T nondestructive magnet at the Wuhan National High Magnetic Field Center, IEEE Trans. Appl. Supercond., 24, 1, 10.1109/tasc.2013.2284273
2016, Concept design of 100-T pulsed magnet at the Wuhan National High Magnetic Field Center, IEEE Trans. Appl. Supercond., 26, 1, 10.1109/tasc.2015.2513366
2012, Design of a 135 MW power supply for a 50 T pulsed magnet, IEEE Trans. Appl. Supercond., 22, 5400504, 10.1109/tasc.2012.2183630
2013, Magnet design and analysis of a 40 Tesla long pulse system energized by a battery bank, J. Low Temp. Phys., 170, 475, 10.1007/s10909-012-0670-z
2014, Development of a high-stability flat-top pulsed magnetic field facility, IEEE Trans. Power Electron., 29, 4532, 10.1109/tpel.2013.2285125
2014, Design and test of a flat-top magnetic field system driven by capacitor banks, Rev. Sci. Instrum., 85, 045106, 10.1063/1.4870410
2015, Landau level splitting in Cd3As2 under high magnetic fields, Nat. Commun., 6, 7779, 10.1038/ncomms8779
2016, Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5, Nat. Commun., 7, 12516, 10.1038/ncomms12516
2015, Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2, Phys. Rev. X, 5, 031037, 10.1103/physrevx.5.031037
2013, Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena, Phys. Rev. Lett., 111, 246603, 10.1103/physrevlett.111.246603
2015, Quasi-linear magnetoresistance and the violation of Kohler's rule in the quasi-one-dimensional Ta4Pd3Te16 superconductor, J. Phys. Condens. Matter, 27, 335701, 10.1088/0953-8984/27/33/335701
2017, Emptying Dirac valleys in bismuth using high magnetic fields, Nat. Commun., 8, 15297, 10.1038/ncomms15297
2017, Magnetic-tunnelling-induced Weyl node annihilation in TaP, Nat. Phys., 13, 979, 10.1038/nphys4183
2016, Al3+ doping effects and high-field phase diagram of La0.5Sr0.5Mn1−xAlxO3, J. Phys. D Appl. Phys., 49, 035001, 10.1088/0022-3727/49/3/035001
2015, The magnetic anisotropy and complete phase diagram of CuFeO2 measured in a pulsed high magnetic field up to 75T, Chin. Phys. Lett., 32, 047502, 10.1088/0256-307x/32/4/047502
2014, High-field magnetization study of spin-chain compounds Ca3Co2−xMnxO6, J. Magnetism Magnetic Mater., 361, 157, 10.1016/j.jmmm.2014.02.088
2015, Engineering of ion-doping on the ground states and Bose-Einstein condensation of Sr3Cr2O8, Mater. Chem. Phys., 167, 278, 10.1016/j.matchemphys.2015.10.044
2017, Low temperature photo-induced carrier dynamics in the GaAs0.985N0.015 alloy, J. Alloys Compd., 699, 297, 10.1016/j.jallcom.2017.01.012
2015, Magnetic field induced extraordinary photoluminescence enhancement in Er3+:YVO4 single crystal, J. Appl. Phys., 118, 083101, 10.1063/1.4928853
2015, Hidden local symmetry of Eu3+ in xenotime-like crystals revealed by high magnetic fields, J. Appl. Phys., 117, 055902, 10.1063/1.4906856
2013, The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals, J. Mater. Chem. C, 1, 7608, 10.1039/c3tc31385a
2012, Development of high-magnetic-field, high-frequency electronic spin resonance system, Acta Phys. Sin., 61, 107601, 10.7498/aps.61.107601
2014, Disappearance of Ising nature in Ca3ZnMnO6 studied by high-field ESR, J. Phys. Condens. Matter, 26, 236001, 10.1088/0953-8984/26/23/236001
2015, Uniaxial magnetic anisotropy of square-planar chromium (II) complexes revealed by magnetic and HF-EPR studies, Chem. Commun., 51, 17688, 10.1039/c5cc07025b
2011, Electromagnetic forming—a review, J. Mater. Process. Technol., 211, 787, 10.1016/j.jmatprotec.2010.12.012
2012, Space-time-controlled multi-stage pulsed magnetic field forming and manufacturing technology, 53
2014, The electromagnetic flanging of a large-scale sheet workpiece, IEEE Trans. Appl. Supercond., 24, 0500805
2016, Axially movable electromagnetic forming system for large-scale metallic sheet, IEEE Trans. Appl. Supercond., 26, 1, 10.1109/tasc.2016.2542480
2015, Radial Lorentz force augmented deep drawing for large drawing ratio using a novel dual-coil electromagnetic forming system, J. Mater. Process. Technol., 222, 13, 10.1016/j.jmatprotec.2015.02.029
2016, Application of triple-coil system for improving deformation depth of tube in electromagnetic forming, IEEE Trans. Appl. Supercond., 26, 3701204, 10.1109/tasc.2016.2542482
2011, Post-assembly magnetization of rare-earth fractional-slot surface permanent-magnet machines using a two-shot method, IEEE Trans. Industry Appl., 47, 2478, 10.1109/tia.2011.2168933
2015, Post-assembly magnetization of a 100 kW high speed permanent magnet rotor, Rev. Sci. Instrum., 86, 034706, 10.1063/1.4914586
2014, Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms, Lab Chip, 14, 2762, 10.1039/c4lc00367e
2009, Magnetic targeting for site-specific drug delivery: applications and clinical potential, Expert Opin. Drug Deliv., 6, 53, 10.1517/17425240802662795
2011, Magnetically enhanced nucleic acid delivery, Ten years of magnetofection—progress and prospects, Adv. Drug Deliv. Rev., 63, 1300, 10.1016/j.addr.2011.08.002
2013, Enhanced separation of magnetic and diamagnetic particles in a dilute ferrofluid, Appl. Phys. Lett., 102, 234101, 10.1063/1.4810874
2016, Note: magnetic targeting for enhancement of the activation efficiency of G protein-coupled receptor with a two-pair coil system, Rev. Sci. Instrum., 87, 016103, 10.1063/1.4939732
2015, Three-dimensional analysis and enhancement of continuous magnetic separation of particles in microfluidics, Microfluidics Nanofluidics, 18, 1209, 10.1007/s10404-014-1516-6
2015, An active microfluidic mixer utilizing a hybrid gradient magnetic field, Int. J. Appl. Electromagn. Mech., 47, 583, 10.3233/JAE-140057