The protein 14-3-3: A functionally versatile molecule in Giardia duodenalis

Advances in Parasitology - Tập 106 - Trang 51-103 - 2019
Marco Lalle1, Annarita Fiorillo2
1Department of Infectious Diseases, European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy
2Department of Biochemical Sciences “A. Rossi Fanelli”, “Sapienza” University of Rome, Rome, Italy

Tài liệu tham khảo

Adam, 2001, Biology of Giardia lamblia, Clin. Microbiol. Rev., 14, 447, 10.1128/CMR.14.3.447-475.2001 Aitken, 2006, 14-3-3 proteins: a historic overview, Semin. Cancer Biol., 16, 162, 10.1016/j.semcancer.2006.03.005 Aitken, 2011, Post-translational modification of 14-3-3 isoforms and regulation of cellular function, Semin. Cell Dev. Biol., 22, 673, 10.1016/j.semcdb.2011.08.003 Alblova, 2017, Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1, Proc. Natl. Acad. Sci. U. S. A., 114, E9811, 10.1073/pnas.1714491114 Allain, 2017, Interactions of Giardia sp. with the intestinal barrier: epithelium, mucus, and microbiota, Tissue Barriers, 5, 10.1080/21688370.2016.1274354 Alvarado, 2010, Analysis of phosphorylated proteins and inhibition of kinase activity during Giardia intestinalis excystation, Parasitol Int., 59, 54, 10.1016/j.parint.2009.10.005 Andrei, 2018, Rationally designed semisynthetic natural product analogues for stabilization of 14-3-3 protein-protein interactions, Angew. Chem. Int. Ed. Engl., 57, 13470, 10.1002/anie.201806584 Ankarklev, 2010, Behind the smile: cell biology and disease mechanisms of Giardia species, Nat. Rev. Microbiol., 8, 413, 10.1038/nrmicro2317 Argüelles, 2013, Molecular control of the amount, subcellular location, and activity state of translation elongation factor 2 in neurons experiencing stress, Free Radic. Biol. Med., 61, 61, 10.1016/j.freeradbiomed.2013.03.016 Argüello-Garciá, 2009, Encystation commitment in Giardia duodenalis: a long and winding road, Parasite, 16, 247, 10.1051/parasite/2009164247 Bagchi, 2012, Programmed cell death in Giardia, Parasitology, 139, 894, 10.1017/S003118201200011X Bajaj Pahuja, 2015, Phosphoregulatory protein 14-3-3 facilitates SAC1 transport from the endoplasmic reticulum, Proc. Natl. Acad. Sci. U. S. A., 112, E3199, 10.1073/pnas.1509119112 Beaven, 2017, 14-3-3 regulation of Ncd reveals a new mechanism for targeting proteins to the spindle in oocytes, J. Cell Biol., 216, 3029, 10.1083/jcb.201704120 Benton, 2002, Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation, Dev. Cell, 3, 659, 10.1016/S1534-5807(02)00320-9 Benz, 2010, Depletion of 14-3-3 proteins in bloodstream-form Trypanosoma brucei inhibits variant surface glycoprotein recycling, Int. J. Parasitol., 40, 629, 10.1016/j.ijpara.2009.10.015 Bier, 2013, Molecular tweezers modulate 14-3-3 protein-protein interactions, Nat. Chem., 5, 234, 10.1038/nchem.1570 Boudreau, 2013, 14-3-3 sigma stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion, Proc. Natl. Acad. Sci. U. S. A., 110, E3937, 10.1073/pnas.1315022110 Brennand, 2011, Autophagy in parasitic protists: unique features and drug targets, Mol. Biochem. Parasitol., 177, 83, 10.1016/j.molbiopara.2011.02.003 Bridges, 2005, 14-3-3 proteins: a number of functions for a numbered protein, Sci. STKE, 2005, re10, 10.1126/stke.2962005re10 Brock, 2008, Arachidonic acid binds 14-3-3zeta, releases 14-3-3zeta from phosphorylated BAD and induces aggregation of 14-3-3zeta, Neurochem. Res., 33, 801, 10.1007/s11064-007-9498-3 Bruckmann, 2007, Post-transcriptional control of the Saccharomyces cerevisiae proteome by 14-3-3 proteins, J. Proteome Res., 6, 1689, 10.1021/pr0605522 Bunney, 2001, 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase, Proc. Natl. Acad. Sci. U S A, 98, 4249, 10.1073/pnas.061437498 Bustos, 2012, The role of protein disorder in the 14-3-3 interaction network, Mol. Biosyst., 8, 178, 10.1039/C1MB05216K Cacciò, 2018, Host specificity in the Giardia duodenalis species complex, Infect. Genet. Evol., 66, 335, 10.1016/j.meegid.2017.12.001 Cau, 2015, Molecular dynamics simulations and structural analysis of Giardia duodenalis 14-3-3 protein-protein interactions, J. Chem. Inf. Model., 55, 2611, 10.1021/acs.jcim.5b00452 Chalupska, 2019, Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins, Sci. Rep., 9, 567, 10.1038/s41598-018-37158-6 Chamberlain, 1995, Distinct effects of alpha-SNAP, 14-3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis, J. Cell Biol., 130, 1063, 10.1083/jcb.130.5.1063 Chatterjee, 2016, Interaction analyses of the integrin beta2 cytoplasmic tail with the F3 FERM domain of talin and 14-3-3zeta reveal a ternary complex with phosphorylated tail, J. Mol. Biol., 428, 4129, 10.1016/j.jmb.2016.08.014 Chaudhri, 2003, Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo, Biochem. Biophys. Res. Commun., 300, 679, 10.1016/S0006-291X(02)02902-9 Chen, 2008, The SIN kinase Sid2 regulates cytoplasmic retention of the S. pombe Cdc14-like phosphatase Clp1, Curr. Biol., 18, 1594, 10.1016/j.cub.2008.08.067 Chen, 2008, UPF1, a conserved nonsense-mediated mRNA decay factor, regulates cyst wall protein transcripts in Giardia lamblia, PLoS One, 3, e3609, 10.1371/journal.pone.0003609 Coblitz, 2006, C-terminal binding: an expanded repertoire and function of 14-3-3 proteins, FEBS Lett., 580, 1531, 10.1016/j.febslet.2006.02.014 Courchet, 2008, Interaction with 14-3-3 adaptors regulates the sorting of hMex-3B RNA-binding protein to distinct classes of RNA granules, J. Biol. Chem., 283, 32131, 10.1074/jbc.M802927200 de Boer, 2013, Plant 14-3-3 proteins as spiders in a web of phosphorylation, Protoplasma, 250, 425, 10.1007/s00709-012-0437-z Dehecq, 2018, Nonsense-mediated mRNA decay involves two distinct Upf1-bound complexes, EMBO J., 37, 10.15252/embj.201899278 Denison, 2014, Phosphorylation-related modification at the dimer interface of 14-3-3omega dramatically alters monomer interaction dynamics, Arch. Biochem. Biophys., 541, 1, 10.1016/j.abb.2013.10.025 Dorner, 1999, The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family, J. Biol. Chem., 274, 33654, 10.1074/jbc.274.47.33654 Einarsson, 2016, Coordinated changes in gene expression throughout encystation of Giardia intestinalis, PLoS Negl. Trop. Dis., 10, 10.1371/journal.pntd.0004571 Emery, 2016, Induction of virulence factors in Giardia duodenalis independent of host attachment, Sci. Rep., 6, 10.1038/srep20765 Emery, 2018, Differential protein expression and post-translational modifications in metronidazole-resistant Giardia duodenalis, Gigascience, 7, 10.1093/gigascience/giy024 Evans-Osses, 2017, Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro, Eur. J. Cell Biol., 96, 131, 10.1016/j.ejcb.2017.01.005 Faso, 2011, Membrane trafficking and organelle biogenesis in Giardia lamblia: use it or lose it, Int. J. Parasitol., 41, 471, 10.1016/j.ijpara.2010.12.014 Faso, 2013, The proteome landscape of Giardia lamblia encystation, PLoS One, 8, 10.1371/journal.pone.0083207 Fiorillo, 2014, The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference, PLoS One, 9, 10.1371/journal.pone.0092902 Furukawa, 1993, Demonstration of the phosphorylation-dependent interaction of tryptophan hydroxylase with the 14-3-3 protein, Biochem. Biophys. Res. Commun., 194, 144, 10.1006/bbrc.1993.1796 Gardino, 2011, 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis, Semin. Cell Dev. Biol., 22, 688, 10.1016/j.semcdb.2011.09.008 Gardino, 2006, Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms, Semin. Cancer Biol., 16, 173, 10.1016/j.semcancer.2006.03.007 Gargantini, 2012, Putative SF2 helicases of the early-branching eukaryote Giardia lamblia are involved in antigenic variation and parasite differentiation into cysts, BMC Microbiol., 12, 284, 10.1186/1471-2180-12-284 Gohla, 2002, 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin, Curr. Biol., 12, 1704, 10.1016/S0960-9822(02)01184-3 Gómez-Escoda, 2017, Roles of CDK and DDK in genome duplication and maintenance: meiotic singularities, Genes (Basel), 8, 10.3390/genes8030105 Gourguechon, 2013, The Giardia cell cycle progresses independently of the anaphase-promoting complex, J. Cell Sci., 26, 2246 Henriksson, 2002, A nonphosphorylated 14-3-3 binding motif on exoenzyme S that is functional in vivo, Eur. J. Biochem., 269, 4921, 10.1046/j.1432-1033.2002.03191.x Hirt, 2011, Trichomonas vaginalis pathobiology new insights from the genome sequence, Adv. Parasitol., 77, 87, 10.1016/B978-0-12-391429-3.00006-X Horlock-Roberts, 2017, Drug-free approach to study the unusual cell cycle of Giardia intestinalis, mSphere, 2, 10.1128/mSphere.00384-16 Ichimura, 1987, Brain 14-3-3 protein that activates tryptophan 5-mono-oxygenase and tyrosine 3-mono-oxygenase in the presence of Ca2+, calmodulindependent protein kinase II, FEBS Lett., 219, 79, 10.1016/0014-5793(87)81194-8 Jedelský, 2011, The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis, PLoS One, 6, 10.1371/journal.pone.0017285 Jia, 2017, 14-3-3 proteins: an important regulator of autophagy in diseases, Am. J. Transl. Res., 9, 4738 Jin, 2012, Modular evolution of phosphorylation-based signalling systems, Philos. Trans. R. Soc. Lond. B Biol. Sci., 367, 2540, 10.1098/rstb.2012.0106 Jin, 2004, Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization, Curr. Biol., 14, 1436, 10.1016/j.cub.2004.07.051 Johnson, 2010, Bioinformatic and experimental survey of 14-3-3-binding sites, Biochem. J., 427, 69, 10.1042/BJ20091834 Jonas, 2013, An unusual arrangement of two 14-3-3-like domains in the SMG5-SMG7 heterodimer is required for efficient nonsense-mediated mRNA decay, Genes Dev., 27, 211, 10.1101/gad.206672.112 Kaplan, 2017, Extracellular functions of 14-3-3 adaptor proteins, Cell. Signal., 31, 26, 10.1016/j.cellsig.2016.12.007 Ke, 2018, Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism, Cell Biol. Int., 42, 384, 10.1002/cbin.10915 Kjarland, 2006, Does isoform diversity explain functional differences in the 14-3-3 protein family?, Curr. Pharm. Biotechnol., 7, 217, 10.2174/138920106777549777 Kleppe, 2011, The 14-3-3 proteins in regulation of cellular metabolism, Semin. Cell Dev. Biol., 22, 713, 10.1016/j.semcdb.2011.08.008 Krtková, 2017, 14-3-3 regulates actin filament formation in the deep-branching eukaryote Giardia lamblia, mSphere, 2, 10.1128/mSphere.00248-17 Labib, 2010, How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?, Genes Dev., 24, 1208, 10.1101/gad.1933010 Lalle, 2018, Treatment-refractory giardiasis: challenges and solutions, Infect. Drug Resist., 11, 1921, 10.2147/IDR.S141468 Lalle, 2006, The Giardia duodenalis 14-3-3 protein is post-translationally modified by phosphorylation and polyglycylation of the C-terminal tail, J. Biol. Chem., 281, 5137, 10.1074/jbc.M509673200 Lalle, 2010, Involvement of 14-3-3 protein post-translational modifications in Giardia duodenalis encystation, Int. J. Parasitol., 40, 201, 10.1016/j.ijpara.2009.07.010 Lalle, 2011, Giardia duodenalis 14-3-3 protein is polyglycylated by a tubulin tyrosine ligase-like member and deglycylated by two metallocarboxypeptidases, J. Biol. Chem., 286, 4471, 10.1074/jbc.M110.181511 Lalle, 2012, Interaction network of the 14-3-3 protein in the ancient protozoan parasite Giardia duodenalis, J. Proteome Res., 11, 2666, 10.1021/pr3000199 Lalle, 2013, Interkingdom complementation reveals structural conservation and functional divergence of 14-3-3 proteins, PLoS One, 8, 10.1371/journal.pone.0078090 Lalle, 2015, The FAD-dependent glycerol-3-phosphate dehydrogenase of Giardia duodenalis: an unconventional enzyme that interacts with the g14-3-3 and it is a target of the antitumoral compound NBDHEX, Front. Microbiol., 6, 544, 10.3389/fmicb.2015.00544 Larance, 2010, Global phosphoproteomics identifies a major role for akt and 14-3-3 in regulating Edc3, Mol. Cell. Proteomics, 9, 682, 10.1074/mcp.M900435-MCP200 Laronga, 2000, Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression, J. Biol Chem., 275, 23106, 10.1074/jbc.M905616199 Lauwaet, 2007, Encystation of Giardia lamblia: a model for other parasites, Curr. Opin. Microbiol., 10, 554, 10.1016/j.mib.2007.09.011 Lauwaet, 2011, Mining the Giardia genome and proteome for conserved and unique basal body proteins, Int. J. Parasitol., 41, 1079, 10.1016/j.ijpara.2011.06.001 Lingdan, 2012, Differential dissolved protein expression throughout the life cycle of Giardia lamblia, Exp. Parasitol., 132, 465, 10.1016/j.exppara.2012.09.014 Liu, 1995, Crystal structure of the zeta isoform of the 14-3-3 protein, Nature, 376, 191, 10.1038/376191a0 Liu, 2015, Akt-mediated phosphorylation of XLF impairs non-homologous end-joining DNA repair, Mol. Cell, 57, 648, 10.1016/j.molcel.2015.01.005 Loh, 2013, The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2, Genes Dev., 27, 2125, 10.1101/gad.226951.113 Lozano-Durán, 2015, 14-3-3 proteins in plant-pathogen interactions, Mol. Plant Microbe Interact., 28, 511, 10.1094/MPMI-10-14-0322-CR Ma'ayeh, 2012, Representational difference analysis identifies specific genes in the interaction of Giardia duodenalis with the murine intestinal epithelial cell line, IEC-6, Int. J. Parasitol., 42, 501, 10.1016/j.ijpara.2012.04.004 Maia, 2007, Azasterols impair Giardia lamblia proliferation and induces encystation, Biochem. Biophys. Res. Commun., 363, 310, 10.1016/j.bbrc.2007.08.174 Manning, 2011, The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology, Genome Biol., 12, R66, 10.1186/gb-2011-12-7-r66 Marchat, 2015, DEAD/DExH-box RNA helicases in selected human parasites, Korean J. Parasitol., 53, 583, 10.3347/kjp.2015.53.5.583 Masters, 2001, 14-3-3 proteins mediate an essential anti-apoptotic signal, Biol. Chem., 276, 45193, 10.1074/jbc.M105971200 Matos, 2008, Dbf4-dependent CDC7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis I, Cell, 135, 662, 10.1016/j.cell.2008.10.026 McGowan, 2017, Bioinformatic analysis reveals new determinants of antigenic 14-3-3 proteins and a novel antifungal strategy, PLoS One, 12, 10.1371/journal.pone.0189503 Mizuno, 2007, 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase, Exp. Cell Res., 313, 3624, 10.1016/j.yexcr.2007.07.028 Moore, 1968, Specific acid proteins in the nervous system, 343 Morf, 2010, The transcriptional response to encystation stimuli in Giardia lamblia is restricted to a small set of genes, Eukaryot. Cell, 9, 1566, 10.1128/EC.00100-10 Morrison, 2007, Genomic minimalism in the early diverging intestinal parasite Giardia lamblia, Science, 317, 1921, 10.1126/science.1143837 Mrowiec, 2006, 14-3-3 proteins in membrane protein transport, Biol. Chem., 387, 1227, 10.1515/BC.2006.152 Mullard, 2012, Protein–protein interaction inhibitors get into the groove, Nat. Rev. Drug Discov., 11, 173, 10.1038/nrd3680 Muslin, 1996, Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine, Cell, 84, 889, 10.1016/S0092-8674(00)81067-3 Nagy, 2017, Exploring the binding pathways of the 14-3-3ζ protein: structural and free-energy profiles revealed by Hamiltonian replica exchange molecular dynamics with distancefield distance restraints, PLoS One, 12, 10.1371/journal.pone.0180633 Niño, 2013, Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis, Microbiologyopen, 2, 525, 10.1002/mbo3.88 Obsil, 2011, Structural basis of 14-3-3 protein functions, Semin. Cell Dev. Biol., 22, 663, 10.1016/j.semcdb.2011.09.001 Obsil, 2001, Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation, Cell, 105, 257, 10.1016/S0092-8674(01)00316-6 Oecking, 1994, The fusicoccin receptor of plants is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins, FEBS Lett., 352, 163, 10.1016/0014-5793(94)00949-X Ohtake, 2017, The emerging complexity of ubiquitin architecture, J. Biochem., 161, 125 Ottmann, 2009, A structural rationale for selective stabilization of anti-tumor interactions of 14-3-3 proteins by cotylenin A, J. Mol. Biol., 386, 913, 10.1016/j.jmb.2009.01.005 Paredez, 2014, Identification of obscure yet conserved actin-associated proteins in Giardia lamblia, Eukaryot. Cell, 13, 776, 10.1128/EC.00041-14 Parua, 2014, Yeast 14-3-3 protein functions as a comodulator of transcription by inhibiting coactivator functions, J. Biol. Chem., 289, 35542, 10.1074/jbc.M114.592287 Paul, 2009, Comparative interactomics: analysis of arabidopsis 14-3-3 complexes reveals highly conserved 14-3-3 interactions between humans and plants, J. Proteome Res., 8, 1913, 10.1021/pr8008644 Pennington, 2018, The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein-protein interactions, Oncogene, 37, 5587, 10.1038/s41388-018-0348-3 Petosa, 1998, 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove, J. Biol. Chem., 273, 16305, 10.1074/jbc.273.26.16305 Pham, 2017, Transcriptomic profiling of high-density Giardia foci encysting in the murine proximal intestine, Front. Cell. Infect. Microbiol., 7, 227, 10.3389/fcimb.2017.00227 Pozuelo Rubio, 2004, 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking, Biochem J., 379, 395, 10.1042/bj20031797 Pradhan, 2012, Glycogen storage and degradation during in vitro growth and differentiation of Giardia intestinalis, J. Parasitol., 98, 442, 10.1645/GE-2919.1 Psenakova, 2018, 14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2), Biochim. Biophys. Acta Gen. Subj., 1862, 1612, 10.1016/j.bbagen.2018.04.006 Reiner, 2008, Synchronisation of Giardia lamblia: identification of cell cycle stage-specific genes and a differentiation restriction point, Int. J. Parasitol., 38, 935, 10.1016/j.ijpara.2007.12.005 Rittinger, 1999, Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding, Mol. Cell, 4, 153, 10.1016/S1097-2765(00)80363-9 Rogowski, 2009, Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation, Cell, 137, 1076, 10.1016/j.cell.2009.05.020 Roque, 2005, Lessons from nature: on the molecular recognition elements of the phosphoprotein binding-domains, Biotechnol. Bioeng., 91, 546, 10.1002/bit.20561 Rosenquist, 2000, Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity?, J. Mol. Evol., 51, 446, 10.1007/s002390010107 Rubio-Villena, 2015, Structure-function analysis of PPP1R3D, a protein phosphatase 1 targeting subunit, reveals a binding motif for 14-3-3 proteins which regulates its glycogenic properties, PLoS One, 10, 10.1371/journal.pone.0131476 Saha, 2018, The minimal ESCRT machinery of Giardia lamblia has altered inter-subunit interactions within the ESCRT-II and ESCRT-III complexes, Eur. J. Cell Biol., 97, 44, 10.1016/j.ejcb.2017.11.004 Sánchez, 2000, Acetyl-CoA synthetase from the amitochondriate eukaryote Giardia lamblia belongs to the newly recognized superfamily of acyl-CoA synthetases (nucleoside diphosphate-forming), J. Biol. Chem., 275, 5794, 10.1074/jbc.275.8.5794 Satoh, 2006, Rapid identification of 14-3-3-binding proteins by protein microarray analysis, J. Neurosci. Methods, 152, 278, 10.1016/j.jneumeth.2005.09.015 Shen, 2003, The C-terminal tail of Arabidopsis 14-3-3omega functions as an autoinhibitor and may contain a tenth alpha-helix, Plant J., 34, 473, 10.1046/j.1365-313X.2003.01739.x Sluchanko, 2018, Association of multiple phosphorylated proteins with the 14-3-3 regulatory hubs: problems and perspectives, J. Mol. Biol., 430, 20, 10.1016/j.jmb.2017.11.010 Sluchanko, 2017, Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator, Structure, 25, 305, 10.1016/j.str.2016.12.005 Smith, 2011, Membrane proteins as 14-3-3 clients in functional regulation and intracellular transport, Physiology (Bethesda), 26, 181 Sonda, 2010, Epigenetic mechanisms regulate stage differentiation in the minimized protozoan Giardia lamblia, Mol Microbiol., 76, 48, 10.1111/j.1365-2958.2010.07062.x Stevers, 2018, Modulators of 14-3-3 protein-protein interactions, J. Med. Chem., 10, 3755, 10.1021/acs.jmedchem.7b00574 Stoica, 2006, Interactions between the RNA interference effector protein Ago1 and 14-3-3 proteins: consequences for cell cycle progression, J. Biol. Chem., 281, 37646, 10.1074/jbc.M604476200 Su, 2010, Nuclear export regulation of COP1 by 14-3-3σ in response to DNA damage, Mol. Cancer, 9, 243, 10.1186/1476-4598-9-243 Taoka, 2011, 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen, Nature, 476, 332, 10.1038/nature10272 Thompson, 2012, Giardia-from genome to proteome, Adv. Parasitol., 78, 57, 10.1016/B978-0-12-394303-3.00003-7 Tinti, 2014, ANIA: annotation and integrated analysis of the 14-3-3 interactome, Database (Oxford), 2014, 10.1093/database/bat085 Touz, 2017, Sorting without a Golgi complex, Traffic, 18, 637, 10.1111/tra.12500 Truong, 2002, Role of the 14-3-3 C-terminal loop in ligand interaction, Proteins, 49, 321, 10.1002/prot.10210 Urano, 2002, Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth, Nature, 417, 871, 10.1038/nature00826 van Heusden, 2005, 14-3-3 proteins: regulators of numerous eukaryotic proteins, IUBMB Life, 57, 623, 10.1080/15216540500252666 van Heusden, 1995, The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue, Eur. J. Biochem., 229, 45, 10.1111/j.1432-1033.1995.0045l.x Wampfler, 2014, Proteomics of secretory and endocytic organelles in Giardia lamblia, PLoS One, 9, 10.1371/journal.pone.0094089 Weber, 1997, Posttranslational modifications of alpha- and beta-tubulin in Giardia lamblia, an ancient eukaryote, FEBS Lett., 419, 87, 10.1016/S0014-5793(97)01436-1 Williams, 2011, Identification and analysis of the RNA degrading complexes and machinery of Giardia lamblia using an in silico approach, BMC Genomics, 12, 586, 10.1186/1471-2164-12-586 Winter, 2012, Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity, Nat. Cell Biol., 14, 666, 10.1038/ncb2508 Würtele, 2003, Structural view of a fungal toxin acting on a 14-3-3 regulatory complex, EMBO J., 22, 987, 10.1093/emboj/cdg104 Xiao, 1995, Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways, Nature, 376, 188, 10.1038/376188a0 Yaffe, 2002, How do 14-3-3 proteins work?—gatekeeper phosphorylation and the molecular anvil hypothesis, FEBS Lett., 513, 53, 10.1016/S0014-5793(01)03288-4 Yahyaoui, 2009, 14-3-3 proteins function in the initiation and elongation steps of DNA replication in Saccharomyces cerevisiae, J. Cell Sci., 122, 4419, 10.1242/jcs.044677 Yang, 2006, Structural basis for protein-protein interactions in the 14-3-3 protein family, Proc. Natl. Acad. Sci. U. S. A., 103, 17237, 10.1073/pnas.0605779103 Yichoy, 2011, Lipid metabolism in Giardia: a post-genomic perspective, Parasitology, 138, 267, 10.1017/S0031182010001277 Yu, 2015, Writing and reading the tubulin code, J. Biol. Chem., 290, 17163, 10.1074/jbc.R115.637447 Zheng, 2011, Unraveling regulation and new components of human P-bodies through a protein interaction framework and experimental validation, RNA, 17, 1619, 10.1261/rna.2789611 Zuk, 2005, 14-3-3 protein down-regulates key enzyme activities of nitrate and carbohydrate metabolism in potato plants, J. Agric. Food Chem., 53, 3454, 10.1021/jf0485584 Aghazadeh, 2016, The role of the 14-3-3 protein family in health, disease, and drug development, Drug Discov. Today, 21, 278, 10.1016/j.drudis.2015.09.012 Al-Hakim, 2005, 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK, J. Cell Sci., 118, 5661, 10.1242/jcs.02670 Frearson, 2007, Target assessment for antiparasitic drug discovery, Trends Parasitol., 23, 589, 10.1016/j.pt.2007.08.019 Joo, 2015, Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau, FASEB J., 29, 4133, 10.1096/fj.14-265009 Kaplan, 2017, Targeting 14-3-3 adaptor protein-protein interactions to stimulate central nervous system repair, Neural Regen. Res., 12, 1040, 10.4103/1673-5374.211176 Paiardini, 2014, The phytotoxin fusicoccin differently regulates 14-3-3 proteins association to mode III targets, IUBMB Life, 66, 52, 10.1002/iub.1239 Parua, 2014, Binding and transcriptional regulation by 14-3-3 (Bmh) proteins requires residues outside of the canonical motif, Eukaryot. Cell, 13, 21, 10.1128/EC.00240-13 Stadelmann, 2012, Plasmid vectors for proteomic analyses in Giardia: purification of virulence factors and analysis of the proteasome, Eukaryot. Cell, 11, 864, 10.1128/EC.00092-12 Williams, 2011, NMR spectroscopy of 14-3-3ζ reveals a flexible C-terminal extension: differentiation of the chaperone and phosphoserine-binding activities of 14-3-3ζ, Biochem. J., 437, 493, 10.1042/BJ20102178