The protein 14-3-3: A functionally versatile molecule in Giardia duodenalis
Tài liệu tham khảo
Adam, 2001, Biology of Giardia lamblia, Clin. Microbiol. Rev., 14, 447, 10.1128/CMR.14.3.447-475.2001
Aitken, 2006, 14-3-3 proteins: a historic overview, Semin. Cancer Biol., 16, 162, 10.1016/j.semcancer.2006.03.005
Aitken, 2011, Post-translational modification of 14-3-3 isoforms and regulation of cellular function, Semin. Cell Dev. Biol., 22, 673, 10.1016/j.semcdb.2011.08.003
Alblova, 2017, Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1, Proc. Natl. Acad. Sci. U. S. A., 114, E9811, 10.1073/pnas.1714491114
Allain, 2017, Interactions of Giardia sp. with the intestinal barrier: epithelium, mucus, and microbiota, Tissue Barriers, 5, 10.1080/21688370.2016.1274354
Alvarado, 2010, Analysis of phosphorylated proteins and inhibition of kinase activity during Giardia intestinalis excystation, Parasitol Int., 59, 54, 10.1016/j.parint.2009.10.005
Andrei, 2018, Rationally designed semisynthetic natural product analogues for stabilization of 14-3-3 protein-protein interactions, Angew. Chem. Int. Ed. Engl., 57, 13470, 10.1002/anie.201806584
Ankarklev, 2010, Behind the smile: cell biology and disease mechanisms of Giardia species, Nat. Rev. Microbiol., 8, 413, 10.1038/nrmicro2317
Argüelles, 2013, Molecular control of the amount, subcellular location, and activity state of translation elongation factor 2 in neurons experiencing stress, Free Radic. Biol. Med., 61, 61, 10.1016/j.freeradbiomed.2013.03.016
Argüello-Garciá, 2009, Encystation commitment in Giardia duodenalis: a long and winding road, Parasite, 16, 247, 10.1051/parasite/2009164247
Bagchi, 2012, Programmed cell death in Giardia, Parasitology, 139, 894, 10.1017/S003118201200011X
Bajaj Pahuja, 2015, Phosphoregulatory protein 14-3-3 facilitates SAC1 transport from the endoplasmic reticulum, Proc. Natl. Acad. Sci. U. S. A., 112, E3199, 10.1073/pnas.1509119112
Beaven, 2017, 14-3-3 regulation of Ncd reveals a new mechanism for targeting proteins to the spindle in oocytes, J. Cell Biol., 216, 3029, 10.1083/jcb.201704120
Benton, 2002, Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation, Dev. Cell, 3, 659, 10.1016/S1534-5807(02)00320-9
Benz, 2010, Depletion of 14-3-3 proteins in bloodstream-form Trypanosoma brucei inhibits variant surface glycoprotein recycling, Int. J. Parasitol., 40, 629, 10.1016/j.ijpara.2009.10.015
Bier, 2013, Molecular tweezers modulate 14-3-3 protein-protein interactions, Nat. Chem., 5, 234, 10.1038/nchem.1570
Boudreau, 2013, 14-3-3 sigma stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion, Proc. Natl. Acad. Sci. U. S. A., 110, E3937, 10.1073/pnas.1315022110
Brennand, 2011, Autophagy in parasitic protists: unique features and drug targets, Mol. Biochem. Parasitol., 177, 83, 10.1016/j.molbiopara.2011.02.003
Bridges, 2005, 14-3-3 proteins: a number of functions for a numbered protein, Sci. STKE, 2005, re10, 10.1126/stke.2962005re10
Brock, 2008, Arachidonic acid binds 14-3-3zeta, releases 14-3-3zeta from phosphorylated BAD and induces aggregation of 14-3-3zeta, Neurochem. Res., 33, 801, 10.1007/s11064-007-9498-3
Bruckmann, 2007, Post-transcriptional control of the Saccharomyces cerevisiae proteome by 14-3-3 proteins, J. Proteome Res., 6, 1689, 10.1021/pr0605522
Bunney, 2001, 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase, Proc. Natl. Acad. Sci. U S A, 98, 4249, 10.1073/pnas.061437498
Bustos, 2012, The role of protein disorder in the 14-3-3 interaction network, Mol. Biosyst., 8, 178, 10.1039/C1MB05216K
Cacciò, 2018, Host specificity in the Giardia duodenalis species complex, Infect. Genet. Evol., 66, 335, 10.1016/j.meegid.2017.12.001
Cau, 2015, Molecular dynamics simulations and structural analysis of Giardia duodenalis 14-3-3 protein-protein interactions, J. Chem. Inf. Model., 55, 2611, 10.1021/acs.jcim.5b00452
Chalupska, 2019, Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins, Sci. Rep., 9, 567, 10.1038/s41598-018-37158-6
Chamberlain, 1995, Distinct effects of alpha-SNAP, 14-3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis, J. Cell Biol., 130, 1063, 10.1083/jcb.130.5.1063
Chatterjee, 2016, Interaction analyses of the integrin beta2 cytoplasmic tail with the F3 FERM domain of talin and 14-3-3zeta reveal a ternary complex with phosphorylated tail, J. Mol. Biol., 428, 4129, 10.1016/j.jmb.2016.08.014
Chaudhri, 2003, Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo, Biochem. Biophys. Res. Commun., 300, 679, 10.1016/S0006-291X(02)02902-9
Chen, 2008, The SIN kinase Sid2 regulates cytoplasmic retention of the S. pombe Cdc14-like phosphatase Clp1, Curr. Biol., 18, 1594, 10.1016/j.cub.2008.08.067
Chen, 2008, UPF1, a conserved nonsense-mediated mRNA decay factor, regulates cyst wall protein transcripts in Giardia lamblia, PLoS One, 3, e3609, 10.1371/journal.pone.0003609
Coblitz, 2006, C-terminal binding: an expanded repertoire and function of 14-3-3 proteins, FEBS Lett., 580, 1531, 10.1016/j.febslet.2006.02.014
Courchet, 2008, Interaction with 14-3-3 adaptors regulates the sorting of hMex-3B RNA-binding protein to distinct classes of RNA granules, J. Biol. Chem., 283, 32131, 10.1074/jbc.M802927200
de Boer, 2013, Plant 14-3-3 proteins as spiders in a web of phosphorylation, Protoplasma, 250, 425, 10.1007/s00709-012-0437-z
Dehecq, 2018, Nonsense-mediated mRNA decay involves two distinct Upf1-bound complexes, EMBO J., 37, 10.15252/embj.201899278
Denison, 2014, Phosphorylation-related modification at the dimer interface of 14-3-3omega dramatically alters monomer interaction dynamics, Arch. Biochem. Biophys., 541, 1, 10.1016/j.abb.2013.10.025
Dorner, 1999, The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family, J. Biol. Chem., 274, 33654, 10.1074/jbc.274.47.33654
Einarsson, 2016, Coordinated changes in gene expression throughout encystation of Giardia intestinalis, PLoS Negl. Trop. Dis., 10, 10.1371/journal.pntd.0004571
Emery, 2016, Induction of virulence factors in Giardia duodenalis independent of host attachment, Sci. Rep., 6, 10.1038/srep20765
Emery, 2018, Differential protein expression and post-translational modifications in metronidazole-resistant Giardia duodenalis, Gigascience, 7, 10.1093/gigascience/giy024
Evans-Osses, 2017, Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro, Eur. J. Cell Biol., 96, 131, 10.1016/j.ejcb.2017.01.005
Faso, 2011, Membrane trafficking and organelle biogenesis in Giardia lamblia: use it or lose it, Int. J. Parasitol., 41, 471, 10.1016/j.ijpara.2010.12.014
Faso, 2013, The proteome landscape of Giardia lamblia encystation, PLoS One, 8, 10.1371/journal.pone.0083207
Fiorillo, 2014, The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference, PLoS One, 9, 10.1371/journal.pone.0092902
Furukawa, 1993, Demonstration of the phosphorylation-dependent interaction of tryptophan hydroxylase with the 14-3-3 protein, Biochem. Biophys. Res. Commun., 194, 144, 10.1006/bbrc.1993.1796
Gardino, 2011, 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis, Semin. Cell Dev. Biol., 22, 688, 10.1016/j.semcdb.2011.09.008
Gardino, 2006, Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms, Semin. Cancer Biol., 16, 173, 10.1016/j.semcancer.2006.03.007
Gargantini, 2012, Putative SF2 helicases of the early-branching eukaryote Giardia lamblia are involved in antigenic variation and parasite differentiation into cysts, BMC Microbiol., 12, 284, 10.1186/1471-2180-12-284
Gohla, 2002, 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin, Curr. Biol., 12, 1704, 10.1016/S0960-9822(02)01184-3
Gómez-Escoda, 2017, Roles of CDK and DDK in genome duplication and maintenance: meiotic singularities, Genes (Basel), 8, 10.3390/genes8030105
Gourguechon, 2013, The Giardia cell cycle progresses independently of the anaphase-promoting complex, J. Cell Sci., 26, 2246
Henriksson, 2002, A nonphosphorylated 14-3-3 binding motif on exoenzyme S that is functional in vivo, Eur. J. Biochem., 269, 4921, 10.1046/j.1432-1033.2002.03191.x
Hirt, 2011, Trichomonas vaginalis pathobiology new insights from the genome sequence, Adv. Parasitol., 77, 87, 10.1016/B978-0-12-391429-3.00006-X
Horlock-Roberts, 2017, Drug-free approach to study the unusual cell cycle of Giardia intestinalis, mSphere, 2, 10.1128/mSphere.00384-16
Ichimura, 1987, Brain 14-3-3 protein that activates tryptophan 5-mono-oxygenase and tyrosine 3-mono-oxygenase in the presence of Ca2+, calmodulindependent protein kinase II, FEBS Lett., 219, 79, 10.1016/0014-5793(87)81194-8
Jedelský, 2011, The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis, PLoS One, 6, 10.1371/journal.pone.0017285
Jia, 2017, 14-3-3 proteins: an important regulator of autophagy in diseases, Am. J. Transl. Res., 9, 4738
Jin, 2012, Modular evolution of phosphorylation-based signalling systems, Philos. Trans. R. Soc. Lond. B Biol. Sci., 367, 2540, 10.1098/rstb.2012.0106
Jin, 2004, Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization, Curr. Biol., 14, 1436, 10.1016/j.cub.2004.07.051
Johnson, 2010, Bioinformatic and experimental survey of 14-3-3-binding sites, Biochem. J., 427, 69, 10.1042/BJ20091834
Jonas, 2013, An unusual arrangement of two 14-3-3-like domains in the SMG5-SMG7 heterodimer is required for efficient nonsense-mediated mRNA decay, Genes Dev., 27, 211, 10.1101/gad.206672.112
Kaplan, 2017, Extracellular functions of 14-3-3 adaptor proteins, Cell. Signal., 31, 26, 10.1016/j.cellsig.2016.12.007
Ke, 2018, Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism, Cell Biol. Int., 42, 384, 10.1002/cbin.10915
Kjarland, 2006, Does isoform diversity explain functional differences in the 14-3-3 protein family?, Curr. Pharm. Biotechnol., 7, 217, 10.2174/138920106777549777
Kleppe, 2011, The 14-3-3 proteins in regulation of cellular metabolism, Semin. Cell Dev. Biol., 22, 713, 10.1016/j.semcdb.2011.08.008
Krtková, 2017, 14-3-3 regulates actin filament formation in the deep-branching eukaryote Giardia lamblia, mSphere, 2, 10.1128/mSphere.00248-17
Labib, 2010, How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?, Genes Dev., 24, 1208, 10.1101/gad.1933010
Lalle, 2018, Treatment-refractory giardiasis: challenges and solutions, Infect. Drug Resist., 11, 1921, 10.2147/IDR.S141468
Lalle, 2006, The Giardia duodenalis 14-3-3 protein is post-translationally modified by phosphorylation and polyglycylation of the C-terminal tail, J. Biol. Chem., 281, 5137, 10.1074/jbc.M509673200
Lalle, 2010, Involvement of 14-3-3 protein post-translational modifications in Giardia duodenalis encystation, Int. J. Parasitol., 40, 201, 10.1016/j.ijpara.2009.07.010
Lalle, 2011, Giardia duodenalis 14-3-3 protein is polyglycylated by a tubulin tyrosine ligase-like member and deglycylated by two metallocarboxypeptidases, J. Biol. Chem., 286, 4471, 10.1074/jbc.M110.181511
Lalle, 2012, Interaction network of the 14-3-3 protein in the ancient protozoan parasite Giardia duodenalis, J. Proteome Res., 11, 2666, 10.1021/pr3000199
Lalle, 2013, Interkingdom complementation reveals structural conservation and functional divergence of 14-3-3 proteins, PLoS One, 8, 10.1371/journal.pone.0078090
Lalle, 2015, The FAD-dependent glycerol-3-phosphate dehydrogenase of Giardia duodenalis: an unconventional enzyme that interacts with the g14-3-3 and it is a target of the antitumoral compound NBDHEX, Front. Microbiol., 6, 544, 10.3389/fmicb.2015.00544
Larance, 2010, Global phosphoproteomics identifies a major role for akt and 14-3-3 in regulating Edc3, Mol. Cell. Proteomics, 9, 682, 10.1074/mcp.M900435-MCP200
Laronga, 2000, Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression, J. Biol Chem., 275, 23106, 10.1074/jbc.M905616199
Lauwaet, 2007, Encystation of Giardia lamblia: a model for other parasites, Curr. Opin. Microbiol., 10, 554, 10.1016/j.mib.2007.09.011
Lauwaet, 2011, Mining the Giardia genome and proteome for conserved and unique basal body proteins, Int. J. Parasitol., 41, 1079, 10.1016/j.ijpara.2011.06.001
Lingdan, 2012, Differential dissolved protein expression throughout the life cycle of Giardia lamblia, Exp. Parasitol., 132, 465, 10.1016/j.exppara.2012.09.014
Liu, 1995, Crystal structure of the zeta isoform of the 14-3-3 protein, Nature, 376, 191, 10.1038/376191a0
Liu, 2015, Akt-mediated phosphorylation of XLF impairs non-homologous end-joining DNA repair, Mol. Cell, 57, 648, 10.1016/j.molcel.2015.01.005
Loh, 2013, The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2, Genes Dev., 27, 2125, 10.1101/gad.226951.113
Lozano-Durán, 2015, 14-3-3 proteins in plant-pathogen interactions, Mol. Plant Microbe Interact., 28, 511, 10.1094/MPMI-10-14-0322-CR
Ma'ayeh, 2012, Representational difference analysis identifies specific genes in the interaction of Giardia duodenalis with the murine intestinal epithelial cell line, IEC-6, Int. J. Parasitol., 42, 501, 10.1016/j.ijpara.2012.04.004
Maia, 2007, Azasterols impair Giardia lamblia proliferation and induces encystation, Biochem. Biophys. Res. Commun., 363, 310, 10.1016/j.bbrc.2007.08.174
Manning, 2011, The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology, Genome Biol., 12, R66, 10.1186/gb-2011-12-7-r66
Marchat, 2015, DEAD/DExH-box RNA helicases in selected human parasites, Korean J. Parasitol., 53, 583, 10.3347/kjp.2015.53.5.583
Masters, 2001, 14-3-3 proteins mediate an essential anti-apoptotic signal, Biol. Chem., 276, 45193, 10.1074/jbc.M105971200
Matos, 2008, Dbf4-dependent CDC7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis I, Cell, 135, 662, 10.1016/j.cell.2008.10.026
McGowan, 2017, Bioinformatic analysis reveals new determinants of antigenic 14-3-3 proteins and a novel antifungal strategy, PLoS One, 12, 10.1371/journal.pone.0189503
Mizuno, 2007, 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase, Exp. Cell Res., 313, 3624, 10.1016/j.yexcr.2007.07.028
Moore, 1968, Specific acid proteins in the nervous system, 343
Morf, 2010, The transcriptional response to encystation stimuli in Giardia lamblia is restricted to a small set of genes, Eukaryot. Cell, 9, 1566, 10.1128/EC.00100-10
Morrison, 2007, Genomic minimalism in the early diverging intestinal parasite Giardia lamblia, Science, 317, 1921, 10.1126/science.1143837
Mrowiec, 2006, 14-3-3 proteins in membrane protein transport, Biol. Chem., 387, 1227, 10.1515/BC.2006.152
Mullard, 2012, Protein–protein interaction inhibitors get into the groove, Nat. Rev. Drug Discov., 11, 173, 10.1038/nrd3680
Muslin, 1996, Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine, Cell, 84, 889, 10.1016/S0092-8674(00)81067-3
Nagy, 2017, Exploring the binding pathways of the 14-3-3ζ protein: structural and free-energy profiles revealed by Hamiltonian replica exchange molecular dynamics with distancefield distance restraints, PLoS One, 12, 10.1371/journal.pone.0180633
Niño, 2013, Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis, Microbiologyopen, 2, 525, 10.1002/mbo3.88
Obsil, 2011, Structural basis of 14-3-3 protein functions, Semin. Cell Dev. Biol., 22, 663, 10.1016/j.semcdb.2011.09.001
Obsil, 2001, Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation, Cell, 105, 257, 10.1016/S0092-8674(01)00316-6
Oecking, 1994, The fusicoccin receptor of plants is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins, FEBS Lett., 352, 163, 10.1016/0014-5793(94)00949-X
Ohtake, 2017, The emerging complexity of ubiquitin architecture, J. Biochem., 161, 125
Ottmann, 2009, A structural rationale for selective stabilization of anti-tumor interactions of 14-3-3 proteins by cotylenin A, J. Mol. Biol., 386, 913, 10.1016/j.jmb.2009.01.005
Paredez, 2014, Identification of obscure yet conserved actin-associated proteins in Giardia lamblia, Eukaryot. Cell, 13, 776, 10.1128/EC.00041-14
Parua, 2014, Yeast 14-3-3 protein functions as a comodulator of transcription by inhibiting coactivator functions, J. Biol. Chem., 289, 35542, 10.1074/jbc.M114.592287
Paul, 2009, Comparative interactomics: analysis of arabidopsis 14-3-3 complexes reveals highly conserved 14-3-3 interactions between humans and plants, J. Proteome Res., 8, 1913, 10.1021/pr8008644
Pennington, 2018, The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein-protein interactions, Oncogene, 37, 5587, 10.1038/s41388-018-0348-3
Petosa, 1998, 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove, J. Biol. Chem., 273, 16305, 10.1074/jbc.273.26.16305
Pham, 2017, Transcriptomic profiling of high-density Giardia foci encysting in the murine proximal intestine, Front. Cell. Infect. Microbiol., 7, 227, 10.3389/fcimb.2017.00227
Pozuelo Rubio, 2004, 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking, Biochem J., 379, 395, 10.1042/bj20031797
Pradhan, 2012, Glycogen storage and degradation during in vitro growth and differentiation of Giardia intestinalis, J. Parasitol., 98, 442, 10.1645/GE-2919.1
Psenakova, 2018, 14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2), Biochim. Biophys. Acta Gen. Subj., 1862, 1612, 10.1016/j.bbagen.2018.04.006
Reiner, 2008, Synchronisation of Giardia lamblia: identification of cell cycle stage-specific genes and a differentiation restriction point, Int. J. Parasitol., 38, 935, 10.1016/j.ijpara.2007.12.005
Rittinger, 1999, Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding, Mol. Cell, 4, 153, 10.1016/S1097-2765(00)80363-9
Rogowski, 2009, Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation, Cell, 137, 1076, 10.1016/j.cell.2009.05.020
Roque, 2005, Lessons from nature: on the molecular recognition elements of the phosphoprotein binding-domains, Biotechnol. Bioeng., 91, 546, 10.1002/bit.20561
Rosenquist, 2000, Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity?, J. Mol. Evol., 51, 446, 10.1007/s002390010107
Rubio-Villena, 2015, Structure-function analysis of PPP1R3D, a protein phosphatase 1 targeting subunit, reveals a binding motif for 14-3-3 proteins which regulates its glycogenic properties, PLoS One, 10, 10.1371/journal.pone.0131476
Saha, 2018, The minimal ESCRT machinery of Giardia lamblia has altered inter-subunit interactions within the ESCRT-II and ESCRT-III complexes, Eur. J. Cell Biol., 97, 44, 10.1016/j.ejcb.2017.11.004
Sánchez, 2000, Acetyl-CoA synthetase from the amitochondriate eukaryote Giardia lamblia belongs to the newly recognized superfamily of acyl-CoA synthetases (nucleoside diphosphate-forming), J. Biol. Chem., 275, 5794, 10.1074/jbc.275.8.5794
Satoh, 2006, Rapid identification of 14-3-3-binding proteins by protein microarray analysis, J. Neurosci. Methods, 152, 278, 10.1016/j.jneumeth.2005.09.015
Shen, 2003, The C-terminal tail of Arabidopsis 14-3-3omega functions as an autoinhibitor and may contain a tenth alpha-helix, Plant J., 34, 473, 10.1046/j.1365-313X.2003.01739.x
Sluchanko, 2018, Association of multiple phosphorylated proteins with the 14-3-3 regulatory hubs: problems and perspectives, J. Mol. Biol., 430, 20, 10.1016/j.jmb.2017.11.010
Sluchanko, 2017, Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator, Structure, 25, 305, 10.1016/j.str.2016.12.005
Smith, 2011, Membrane proteins as 14-3-3 clients in functional regulation and intracellular transport, Physiology (Bethesda), 26, 181
Sonda, 2010, Epigenetic mechanisms regulate stage differentiation in the minimized protozoan Giardia lamblia, Mol Microbiol., 76, 48, 10.1111/j.1365-2958.2010.07062.x
Stevers, 2018, Modulators of 14-3-3 protein-protein interactions, J. Med. Chem., 10, 3755, 10.1021/acs.jmedchem.7b00574
Stoica, 2006, Interactions between the RNA interference effector protein Ago1 and 14-3-3 proteins: consequences for cell cycle progression, J. Biol. Chem., 281, 37646, 10.1074/jbc.M604476200
Su, 2010, Nuclear export regulation of COP1 by 14-3-3σ in response to DNA damage, Mol. Cancer, 9, 243, 10.1186/1476-4598-9-243
Taoka, 2011, 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen, Nature, 476, 332, 10.1038/nature10272
Thompson, 2012, Giardia-from genome to proteome, Adv. Parasitol., 78, 57, 10.1016/B978-0-12-394303-3.00003-7
Tinti, 2014, ANIA: annotation and integrated analysis of the 14-3-3 interactome, Database (Oxford), 2014, 10.1093/database/bat085
Touz, 2017, Sorting without a Golgi complex, Traffic, 18, 637, 10.1111/tra.12500
Truong, 2002, Role of the 14-3-3 C-terminal loop in ligand interaction, Proteins, 49, 321, 10.1002/prot.10210
Urano, 2002, Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth, Nature, 417, 871, 10.1038/nature00826
van Heusden, 2005, 14-3-3 proteins: regulators of numerous eukaryotic proteins, IUBMB Life, 57, 623, 10.1080/15216540500252666
van Heusden, 1995, The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue, Eur. J. Biochem., 229, 45, 10.1111/j.1432-1033.1995.0045l.x
Wampfler, 2014, Proteomics of secretory and endocytic organelles in Giardia lamblia, PLoS One, 9, 10.1371/journal.pone.0094089
Weber, 1997, Posttranslational modifications of alpha- and beta-tubulin in Giardia lamblia, an ancient eukaryote, FEBS Lett., 419, 87, 10.1016/S0014-5793(97)01436-1
Williams, 2011, Identification and analysis of the RNA degrading complexes and machinery of Giardia lamblia using an in silico approach, BMC Genomics, 12, 586, 10.1186/1471-2164-12-586
Winter, 2012, Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity, Nat. Cell Biol., 14, 666, 10.1038/ncb2508
Würtele, 2003, Structural view of a fungal toxin acting on a 14-3-3 regulatory complex, EMBO J., 22, 987, 10.1093/emboj/cdg104
Xiao, 1995, Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways, Nature, 376, 188, 10.1038/376188a0
Yaffe, 2002, How do 14-3-3 proteins work?—gatekeeper phosphorylation and the molecular anvil hypothesis, FEBS Lett., 513, 53, 10.1016/S0014-5793(01)03288-4
Yahyaoui, 2009, 14-3-3 proteins function in the initiation and elongation steps of DNA replication in Saccharomyces cerevisiae, J. Cell Sci., 122, 4419, 10.1242/jcs.044677
Yang, 2006, Structural basis for protein-protein interactions in the 14-3-3 protein family, Proc. Natl. Acad. Sci. U. S. A., 103, 17237, 10.1073/pnas.0605779103
Yichoy, 2011, Lipid metabolism in Giardia: a post-genomic perspective, Parasitology, 138, 267, 10.1017/S0031182010001277
Yu, 2015, Writing and reading the tubulin code, J. Biol. Chem., 290, 17163, 10.1074/jbc.R115.637447
Zheng, 2011, Unraveling regulation and new components of human P-bodies through a protein interaction framework and experimental validation, RNA, 17, 1619, 10.1261/rna.2789611
Zuk, 2005, 14-3-3 protein down-regulates key enzyme activities of nitrate and carbohydrate metabolism in potato plants, J. Agric. Food Chem., 53, 3454, 10.1021/jf0485584
Aghazadeh, 2016, The role of the 14-3-3 protein family in health, disease, and drug development, Drug Discov. Today, 21, 278, 10.1016/j.drudis.2015.09.012
Al-Hakim, 2005, 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK, J. Cell Sci., 118, 5661, 10.1242/jcs.02670
Frearson, 2007, Target assessment for antiparasitic drug discovery, Trends Parasitol., 23, 589, 10.1016/j.pt.2007.08.019
Joo, 2015, Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau, FASEB J., 29, 4133, 10.1096/fj.14-265009
Kaplan, 2017, Targeting 14-3-3 adaptor protein-protein interactions to stimulate central nervous system repair, Neural Regen. Res., 12, 1040, 10.4103/1673-5374.211176
Paiardini, 2014, The phytotoxin fusicoccin differently regulates 14-3-3 proteins association to mode III targets, IUBMB Life, 66, 52, 10.1002/iub.1239
Parua, 2014, Binding and transcriptional regulation by 14-3-3 (Bmh) proteins requires residues outside of the canonical motif, Eukaryot. Cell, 13, 21, 10.1128/EC.00240-13
Stadelmann, 2012, Plasmid vectors for proteomic analyses in Giardia: purification of virulence factors and analysis of the proteasome, Eukaryot. Cell, 11, 864, 10.1128/EC.00092-12
Williams, 2011, NMR spectroscopy of 14-3-3ζ reveals a flexible C-terminal extension: differentiation of the chaperone and phosphoserine-binding activities of 14-3-3ζ, Biochem. J., 437, 493, 10.1042/BJ20102178