The processing element design for a large-scale spatio-temporal pattern clustering system
Tóm tắt
The clustering of spatio-temporal patterns are essential for many applications. Established from the biological analogy of the cortex, the parametrically coupled logistic map network (PCLMN) provides a viable solution to the clustering problem. To engineer for a single-chip spatio-temporal pattern clustering system, the highly modular PCLMN is designed in analog circuit. In this paper, the 0.6 μm 5 V CMOS design of the processing element is presented. The analog design employs self-calibration techniques to improve the accuracy and robustness of the nonlinear circuits. A fabricated element covers a die area of 0.55 mm2, and consumes 240 mW power at 5 V supply. After calibration, simulation and testing results show that the element fulfills the system-level requirement of the Cort-X model for driving signals up to 1 MHz.
Tài liệu tham khảo
Hopfield, J., & Tank, D. (1985). Neural computation of decisions in optimization problems. Biological Cybernetics, 52, 141–152.
Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4, 4–22.
Widrow, B., Winter, R. G., & Baxter, R. A. (1998). Layered neural nets for pattern recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36, 1109–1118.
Widrow, B., & Lehr, M. A. (1990). 30 years of adaptive neural networks: Perception, madaline, and backpropagation. Proceedings of the IEEE, 78, 1415–1441.
Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan.
Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1). Cambridge, MA: MIT Press.
Kangas, J., Kohonen, T., & Laaksonen, T. (1990). Variants of self-organizing maps. IEEE Transactions on Neural Networks, 1, 93–99.
Gabrys, B., & Bargiela, A. (2000). General fuzzy min-max neural network for clustering and classification. IEEE Transactions on Neural Networks, 11, 769–783.
Quyen, M., et al. (2001). Characterizing neurodynamic changes before seizures. Journal of Clinical Neurophysiology, 18, 191–208.
Silva, F., et al. (2003). Dynamical diseases of brain systems: Different routes to epileptic seizures. IEEE Transactions on Biomedical Engineering, 50, 540–548.
Chavez, M., Quyen, M., Navarro, V., Baulac, M., & Martinerie, J. (2003). Spatio-temporal dynamics prior to neocortical seizures: Amplitude versus phase couplings. IEEE Transactions on Biomedical Engineering, 50, 571–583.
Alessandro, M., et al. (2003). Epilectic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: A report of four patients. IEEE Transactions on Biomedical Engineering, 50, 603–615.
Farhat, N., Lee, G., & Ling, X. (1998). Dynamical networks for ATR. RTO Meeting Proc. 6: Non-Cooperative Air Target Identification Using Radar, pp. D1–D9.
Farhat, N. (2000). Corticonics: The way to designing machines with brain-like intelligence. Proceedings of SPIE, 4109, 103–109.
Hernandez, E., Lee, G., & Farhat, N. (2003). Analog realization of arbitrary one-dimensional maps. IEEE Transactions on Circuits and Systems I, 50, 1538–1547.
Farhat, N. (2004, February). Corticoni networks for higher-level processing. Proc. Intl. Conf. Neural Networks and Computational Intelligence, pp. 256–262.
Yuan, J., Farhat, N., & Van der Spiegel, J. (2006, May). A CMOS monolithic implementation of a nonlinear element for arbitrary 1-D map generation. Proc. ISCAS 2006, pp. 2765–2768.
Yuan, J., Farhat, N., & Van der Spiegel, J. (2006, May). A CMOS monolithic implementation of a nonlinear interconnection module for a corticonic network. Proc. ISCAS 2006, pp. 2769–2772.
University of Pennsylvania patent disclosure, UOP-404US, March 2005, pending.
Abed, K. H., & Siferd, R. E. (2003). CMOS VLSI implementation of a low-power logarithmic converter. IEEE Transactions on Computer, 52, 1421–1433.
Abouchi, N., Gallarini, R., & Rudy, C. (1999). Exponential and logarithmic functions using standard CMOS 0.8 μm technology. Proceedings of the ICECS’99, 1, 189–192.
Yamaji, T., Kanou, N., & Itakura, T. (2002). A temperature-stable CMOS variable-gain amplifier with 80-dB linearly controlled gain range. IEEE Journal of Solid-State Circuits, 37, 553–558.
Kavadias, S., et al. (2000). A logarithmic response CMOS image sensor with on-chip calibration. IEEE Journal of Solid-State Circuits, 35, pp. 1146–1152.
Loose, M., Meier, K., & Schemmel, J. (2001). A self-calibrating single-chip CMOS camera with logarithmic response. IEEE Journal of Solid-State Circuits, 36, 586–596.
Johns, D., & Martin, K. (1997). Analog integrated circuit design. Wiley.
Yuan, J., Farhat, N., & Van der Spiegel, J. (2005). GBOPCAD: A synthesis tool for high-performance gain-boosted OPAMP design. IEEE Transactions on Circuits and Systems I: Regular Papers, 52, 1535–1544.
Liu, W., et al. BSIM3v3.2.2 MOSFET model: User’s manual. Berkeley, CA: University of California.
Pelgrom, M., Duinmaijer, A., & Welbers, A. (1989). Matching properties of MOS transistors. IEEE Journal of Solid-State Circuits, 24, 1433–1440.