The problem of CO2 recycling in subduction zones

Moscow University Geology Bulletin - Tập 66 Số 4 - Trang 250-260 - 2011
A. L. Perchuk1, O. S. Korepanova2
1Moscow State University, Moscow, 119991, Russia
2Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alt, J.C. and Teagl, D.A.H., The Uptake of CO2 During Alteration of the Ocean Crust, Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 1527–1535.

Berman, R.G., Thermobarometry Using Multiequilibrium Calculations: a New Technique with Petrologic Applications, Can. Mineral., 1991, vol. 29, pp. 833–855.

Caciagli, N.C. and Manning, C.E., The Solubility of Calcite in Water at 6–16 Kbar and 500–800°C, Contrib. Mineral. Petrol., 2003, vol. 146, pp. 275–285.

Clausner, C. and Huenges, E., Thermal Conductivity of Rocks and Minerals, in Physics and Phase Relations. A Handbook of Physical Constants. AGU Reference Shelf 3AGU, 1995.

Connolly, J.A.D., Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation, Earth Planet. Sci. Lett., 2005, vol. 236, pp. 524–541.

Dasgupta, R., Hirschmann, M.M., and Withers A.C., Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous, Carbonated Eclogite Under Upper Mantle Conditions, Earth Planet. Sci. Lett., 2004, vol. 227, pp. 73–85.

Gerya, T.V., Stockhert B., and Perchuk A.L., Exhumation of High-pressure Metamorphic Rocks in Subduction Channel: a Numerical Simulation, Tectonics, 2002, vol. 21, no. 6, Art. N 1056.

Gorman, P.J., Kerrick, D.M., and Connolly J.A.D., Modeling Open System Metamorphic Decarbonation of Subducting Slabs, Geochem. Geophys. Geosyst, 2006, vol. 7, no. (Q04007 (doi:10.1029/2005GC001125)).

Hacker, B.R., Abers, G.A., and Peacock, S.M., Subduction Factory 2. Are Intermediate-Depth Earthquakes in Subducting Slabs Linked To Metamorphic Dehydration Reactions?, J. Geophys. Res., 2003, vol. 108, no. B1, pp. 1–26.

Hacker, B.R., Rubie, D.C., Kirby, S.H., and Bohlen, S.R., The Calcite — Aragonite Transformation in Low-Mg Marble: Equilibrium Relations, Transformation Mechanisms, and Rates, J. Geophys. Res., 2005, vol. 110, (B03205 (doi:10.1029/2004JB003302)).

Hammouda, T., High-Pressure Melting of Carbonated Eclogite and Experimental Constraints on Carbon Recycling and Storage in the Mantle, Earth and Planet. Sci. Lett., 2003, vol. 214, pp. 357–368.

Hermann, J., Experimental Constraints on Phase Relations in Subducted Continental Crust, Contrib. Mineral. Petrol., 2004, vol. 143, pp. 219–235.

James, E.R., Manga, M., and Rose, T.P., CO2 Degassing in the Oregon Cascades, Geology, 1999, vol. 27, pp. 823–826.

Jarrard, R.D., Subduction Fluxes of Water, Carbon Dioxide, Chlorine, and Potassium, Geochem., Geophys. Geosyst, 2003, vol. 4, no. 5, (P. 8905 (doi:10.1029/2002GC000392)).

Kerrick, D.M. and Conolly, J.A.D., Metamorphic Devolatilization of Subducted Marine Sediments and the Transport of Volatiles Into the Earth’s Mantle, Nature, 2001a, vol. 411, pp. 293–296.

Kerrick, D.M. and Connolly, J.A.D., Metamorphic Devolatilization of Subducted Oceanic Metabasalts: Implications for Seismicity, Arc Magmatism and Volatile Recycling, Earth Planet. Sci. Lett., 2001b, vol. 189, pp. 19–29.

Leake, B.E., Arps, C.E.S., Birch, W.D., et al., Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names, Can. Mineral., 1997, vol. 35, pp. 219–246.

Marty, B. and Tolstikhin, I.N. CO2 fluxes from Midocean ridges, Arcs and Plumes, Chem. Geol., 1998, vol. 145, pp. 233–248.

Pawley, A., Chlorite Stability in Mantle Peridotite: the Reaction Clinochlore + Enstatite = Forsterite + Pyrope + H2O, Contrib. Mineral. Petrol., 2003, vol. 144, pp. 449–456.

Perchuk, A.L., Korepanova, O.S., and Yapaskurt, V.O., Fluidno-Magmaticheskoe Vzaimodeistvie Glaukofanovogo Slantsa s Olivinom: Eksperimental’noe Modelirovanie v Usloviyakh Termal’nogo Gradienta, Dokl. Akad. Nauk, 2011, vol. 437, no. 2, pp. 235–237 [Dokl. Akad. Nauk (Fluid-Magmatic Interaction between Glaucophane Schist and Olivine: Experimental Modeling under the Conditions of a Thermal Gradient), vol. 437, no. 2, pp. 235–237.].

Plank, T. and Langmuir, C.H. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle, Chem. Geol., 1998, vol. 145, pp. 325–394.

Poli, S., Franzolin, E., Fumagalli, P., and Crottini, A., The Transport of Carbon and Hydrogen in Subducted Oceanic Crust: An Experimental Study To 5 GPa, Earth Planet. Sci. Lett., 2009, vol. 278, pp. 350–360.

Schilling, F. and Wuender, B., Temperature Distribution in Piston-Cylinder Assemblies: Numerical Simulations and Laboratory Experiments, Eur. J. Mineral, 2004, vol. 16, pp. 7–14.

Schmidt, M.W., Lawsonite: Upper Pressure Stability and Formation of Higher Density Hydrous Phases, Am. Mineral., 1996, vol. 80, pp. 1286–1292.

Yaxley, G.M. and Brey, G.P., Phase Relations of Carbonate-Bearing Eclogite Assemblages from 2.5 To 5.5 GPa: Implications for Petrogenesis of Carbonatites, Contrib. Mineral. Petrol., 2004, vol. 146, pp. 606–619.

Yaxley, G.M. and Green, D.H., Experimental Demonstration of Refractory Carbonate-Bearing Eclogite and Siliceous Melt in the Subduction Regime, Earth Planet. Sci. Lett., 1994, vol. 128, pp. 313–325.