The potential removal of imidacloprid from water by heat‐treated kerolites

Pest Management Science - Tập 59 Số 10 - Trang 1162-1168 - 2003
M. Socías‐Viciana1, E. González‐Pradas1, M. A. Saifi1, M.D. Ureña‐Amate1, F. Flores‐Céspedes1, Manuel Fernández‐Pérez1
1Department of Inorganic Chemistry, University of Almería, La Cañada San Urbano s/n, 04120 Almería, Spain

Tóm tắt

AbstractThe adsorption of imidacloprid [1‐(6‐chloro‐3‐pyridinylmethyl)‐N‐nitroimidazolidin‐2‐ylideneamine] on heat‐treated kerolite samples at 110 °C (K‐110), 200 °C (K‐200), 400 °C (K‐400) and 600 °C (K‐600) from pure water solution at 25 °C has been studied. The evolution of the surface properties of the kerolite samples, such as specific surface area and porosity, after heat treatment were analysed. The clays were characterised by using FTIR spectroscopy, X‐ray diffraction, thermogravimetric and differential thermogravimetric analysis, surface analysis and Hg porosimetry. The experimental adsorption data points were fitted to the Freundlich equation in order to calculate the adsorption capacities (Kf) of the samples; Kf values ranged from 242 mg kg−1 for the K‐110 sample to 1005 mg kg−1 for the K‐600 sample. The values obtained for the removal efficiency (R) ranged from 62.8% for K‐110 to 87.2% for K‐600. The adsorption experiments showed that the stronger the heat treatment, the more effective was the adsorption of imidacloprid from pure water. This work shows the potential use of heat‐activated kerolite for the removal of imidacloprid from environmental waters and drinking water resources. Copyright © 2003 Society of Chemical Industry

Từ khóa


Tài liệu tham khảo

USEPA Environmental Fate and Groundwater Branch.EFGWB review of imidacloprid Washington DC Jun 11 3pp (1993).

10.1007/s001289900635

US Geological Survey.The quality of our nation's waters‐nutrients and pesticides Circular 1225 Reston VA; USGS 60pp (1999).

González‐PradasE Flores‐CéspedesF Ureña‐AmateMD Fernández‐PérezM CamisaMG CapriEandGlassCR Adsorption of diuron imidacloprid procymidone and pyrimethanil on Mediterranean soils.Proc XI Symposium Pesticide Chemistry Cremona Italy pp313–319(1999).

10.1051/agro:2001104

Galán E, 1984, Palygorskite‐sepiolite: occurrences, genesis and use. Developments in Sedimentology, 87

MaksimovicZ β‐Kerolite pimelite series from Goles Mountain Yugoslavia Proc Internet Clay Conf Jerusalem 1:97–105(1966).

10.1180/minmag.1977.041.320.04

Zelazny LW, 1989, Minerals in soil environments, 527

Pozo M, 1999, Características texturales y composicionales en depósitos de arcillas magnésicas de la Cuenca de Madrid. I) Kerolitas (sector de Esquivias y Pinto), Boletín Geológico Minero, 110, 77

10.1016/0169-1317(90)90004-9

10.1002/jctb.280520208

Zussman J, 1967, Physical methods in determinative mineralogy

10.1180/claymin.1991.026.3.03

10.1351/pac198557040603

10.1016/0021-9517(64)90089-2

10.1180/000985599546316

Martín de Vidales JL, 1988, Formación de sepiolita‐paligorskita en litofacies lutítico‐carbonáticas en el sector de Borox‐Esquivias (Cuencas de Madrid), Estudios Geol, 44, 7

10.1039/jr9600003973

Adamson AW, 1982, Physical chemistry of surfaces

10.4141/cjss75-019

10.1002/(SICI)1096-9063(199905)55:5<546::AID-PS938>3.0.CO;2-P

10.1039/j19660000344

Sposito G, 1984, The surface chemistry of soils

Faust SD, 1987, Adsorption processes for water treatment