The potential for skin irritation, phototoxicity, and sensitization of ZnO nanoparticles

Molecular & Cellular Toxicology - Tập 8 Số 2 - Trang 171-177 - 2012
Yeon Sue Jang1, Eun Young Lee1, Yoon Hee Park1, Sang Hoon Jeong1, Sang Geun Lee1, Yu Ri Kim2, Meyoung Kon Kim2, Sang Wook Son1
1Laboratory of Cell Signaling and Nanomedicine, Department of Dermatology and Division of Brain Korea 21 Project for Biomedical Science, Korea University College of Medicine, Seoul, Korea
2Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Liu, W. T. Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7 (2006).

Jain, T. K., Morales, M. A., Sahoo, S. K., Leslie-Pelecky, D. L. & Labhasetwar, V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2:194–205 (2005).

McNeil, S. E. Nanotechnology for the biologist. J Leukoc Biol 78:585–594 (2005).

Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760 (2007).

Wagner, V., Dullaart, A., Bock, A. K. & Zweck, A. The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217 (2006).

Nohynek, G. J., Dufour, E. K. & Roberts, M. S. Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol 21:136–149 (2008).

Nohynek, G. J., Lademann, J., Ribaud, C. & Roberts, M. S. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–277 (2007).

Cross, S. E. et al. Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20:148–154 (2007).

Jeong, S. H. et al. Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method. Biochem Biophys Res Commun 394:612–615 (2010).

Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97 (2004).

Peters, K., Unger, R. E., Kirkpatrick, C. J., Gatti, A. M. & Monari, E. Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med 15:321–325 (2004).

Dussert, A. S., Gooris, E. & Hemmerle, J. Characterization of the mineral content of a physical sunscreen emulsion and its distribution onto human stratum corneum. Int J Cosmet Sci 19:119–129 (1997).

Lee, S. H., Kwon, D. & Yoon, T. H. An optimized dispersion of manufactured nanomaterials forin vitro cytotoxicity assays. ToxEHS 2:207–213 (2010).

Kim, Y.-J., Yu, M., Park, H.-O. & Yang, S.I. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by silica nanomaterials in human neuronal cell line. Mol Cell Toxicol 6:336–343 (2010).

Hanley, C. et al. The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4:1409–1420 (2009).

Hanley, C. et al. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19:295103 (2008).

Takeyoshi, M., Yamasaki, K., Yakabe, Y., Takatsuki, M. & Kimber, I. Development of non-radio isotopic endpoint of murine local lymph node assay based on 5-bromo-2′-deoxyuridine (BrdU) incorporation. Toxicol Lett 119:203–208 (2001).

Brown, D. M., Wilson, M. R., MacNee, W., Stone, V. & Donaldson, K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199 (2001).

Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839 (2005).

Hu, X., Cook, S., Wang, P. & Hwang, H. M. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407:3070–3072 (2009).

Chen, L., McCrate, J. M., Lee, J. C. & Li, H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22:105708 (2011).

Harush-Frenkel, O. et al. A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery. Toxicol Appl Pharmacol 246:83–90 (2010).

Schaeublin, N. M. et al. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3:410–420 (2011).

Park, Y. H. et al. Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Toxicology 267:178–181 (2010).

Roguet, R. Use of skin cell cultures for in vitro assessment of corrosion and cutaneous irritancy. Cell Biol Toxicol 15:63–75 (1999).

Roberts, J. E., Wielgus, A. R., Boyes, W. K., Andley, U. & Chignell, C. F. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells. Toxicol Appl Pharmacol 228:49–58 (2008).

Wielgus, A. R., Zhao, B., Chignell, C. F., Hu, D. N. & Roberts, J. E. Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells. Toxicol Appl Pharmacol 242:79–90 (2010).

Larsen, S. T., Roursgaard, M., Jensen, K. A. & Nielsen, G. D. Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol 106:114–117 (2010).