Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Lợi ích tiềm năng cho da từ tổ yến ăn được
Tóm tắt
Tổ yến ăn được (EBN) được hình thành từ nước bọt rắn của loài chim yến. EBN đã nổi tiếng trong văn hóa châu Á suốt nhiều thế kỷ. Chúng thường được tiêu thụ như một món ngon trong dạng súp tổ yến và được cho là có nhiều lợi ích cho da. Với sự gia tăng phổ biến của EBN và tầm quan trọng văn hóa đáng kể, chúng tôi nhằm mục đích cung cấp một bài tổng quan toàn diện về các lợi ích tiềm năng cho da của EBN cũng như vai trò của nó trong chống lão hóa do ánh sáng, giảm viêm, làm lành vết thương, tăng cường hàng rào da và làm trắng da. Mặc dù các kết quả nghiên cứu trong ống nghiệm, trên cơ thể sống và các thử nghiệm lâm sàng sơ bộ đều đầy hứa hẹn, nhưng còn cần có nghiên cứu lâm sàng trên người trong tương lai để xác thực thêm các kết quả này và xác lập hiệu quả cũng như tính an toàn của EBN trong các ứng dụng da liễu.
Từ khóa
#tổ yến ăn được #lợi ích cho da #chống lão hóa #giảm viêm #làm lành vết thương #hàng rào da #làm trắng daTài liệu tham khảo
Marcone MF (2005) Characterization of the edible bird’s nest the “Caviar of the East.” Food Res Int. https://doi.org/10.1016/j.foodres.2005.02.008
Chok KC, Ng MG, Ng KY, Koh RY, Tiong YL, Chye SM (2021) Edible bird’s nest: recent updates and industry insights based on laboratory findings. Front Pharmacol 12:746656. https://doi.org/10.3389/fphar.2021.746656
Siegel DM, Jakus J, Hooper D (2019) Topical natural products in managing dermatologic conditions: observations and recommendations. Cutis 103(4):233-236.e1-e2
Lee TH, Wani WA, Lee CH, Cheng KK, Shreaz S, Wong S, Hamdan N, Azmi NA (2021) Edible bird’s nest: the functional values of the prized animal-based bioproduct from Southeast Asia—a review. Front Pharmacol 12:626233. https://doi.org/10.3389/fphar.2021.626233
Lim J, Wong M, Chan MY, Tan AM, Rajalingam V, Lim LP, Lou J, Tan CL (2006) Use of complementary and alternative medicine in paediatric oncology patients in Singapore. Ann Acad Med Singap 35(11):753–758
Chow WH, Chang P, Lee SC, Wong A, Shen HM, Verkooijen HM (2010) Complementary and alternative medicine among Singapore cancer patients. Ann Acad Med Singap 39(2):129–135
Wong RS (2013) Edible bird’s nest: food or medicine? Chin J Integr Med 19(9):643–649. https://doi.org/10.1007/s11655-013-1563-y
Chye SM, Tai SK, Koh RY, Ng KY (2017) A mini review on medicinal effects of edible bird’s nest. Lett Health Biol Sci. 2(1):65–67. https://doi.org/10.15436/2475-6245.17.016
Eunson Hwang SWP, Yang J-E (2020) Anti-aging, anti-inflammatory, and wound-healing activities of edible bird’s nest in human skin keratinocytes and fibroblasts. Pharmacogn Mag 69:336–342. https://doi.org/10.4103/pm.pm_326_19
Wang D, Shimamura N, Mochizuki M, Nakahara T, Sunada K, Xiao L (2023) Enzyme-digested edible bird’s nest (EBND) prevents UV and arid environment-induced cellular oxidative stress cell death and DNA damage in human skin keratinocytes and three-dimensional epithelium equivalents. Antioxidants (Basel). https://doi.org/10.3390/antiox12030609
Masuda S, Makioka-Itaya Y, Ijichi T, Tsukahara T (2022) Edible bird’s nest extract downregulates epidermal apoptosis and helps reduce damage by ultraviolet radiation in skin of hairless mice. J Clin Biochem Nutr 70(1):33–36. https://doi.org/10.3164/jcbn.21-54
Kim OK, Kim D, Lee M, Park SH, Yamada W, Eun S, Lee J (2021) Standardized edible bird’s nest extract prevents UVB irradiation-mediated oxidative stress and photoaging in the skin. Antioxidants (Basel). https://doi.org/10.3390/antiox10091452
Park S, Kim IS, Park SY, Seo SA, Yang JE, Hwang E (2022) The protective effect of edible bird’s nest against the immune-senescence process of UVB-irradiated hairless mice. Photochem Photobiol 98(4):949–957. https://doi.org/10.1111/php.13564
Lai QWS, Fan Q, Zheng BZ, Chen Y, Dong TT, Tsim KWK (2022) Edible bird’s nest, an Asian health food supplement, possesses anti-inflammatory responses in restoring the symptoms of atopic dermatitis: an analysis of signaling cascades. Front Pharmacol 13:941413. https://doi.org/10.3389/fphar.2022.941413
Sandi DAD, Musfirah Y (2019) Wound healing effects of edible bird’s nests oinment (Aerodramus fuciphagus) in alloxan-induced male rats. Trad Med J. 24(1):33–39. https://doi.org/10.22146/mot.39072
Lai QWS, Guo MSS, Wu KQ, Liao Z, Guan D, Dong TT, Tong P, Tsim KWK (2021) Edible bird’s nest, an Asian health food supplement, possesses moisturizing effect by regulating expression of filaggrin in skin keratinocyte. Front Pharmacol 12:685982. https://doi.org/10.3389/fphar.2021.685982
Sandi DAD, Susiani EF (2021) Formulation of edible bird’s nest (Aerodramus fuciphagus) from central Kalimantan as skin whitening and moisturizing cream. J Pharm Bioallied Sci 13(1):39–45. https://doi.org/10.4103/jpbs.JPBS_276_19
Chan GKL, Wong ZCF, Lam KYC, Cheng LKW, Lin H, Zhang LM, Dong TT, Tsim KWK (2015) Edible bird’s nest, an Asian health food supplement, possesses skin lightening activities: identification of N-acetylneuraminic acid as active ingredient. J Cosmet Dermatol Sci Appl. 5:262–274. https://doi.org/10.4236/jcdsa.2015.54032
Fan Q, Lian J, Liu X, Zou F, Wang X, Chen M (2021) A study on the skin whitening activity of digesta from edible bird’s nest: a mucin glycoprotein. Gels. https://doi.org/10.3390/gels8010024
Wong ZCF, Chan GKL, Wu KQY, Poon KKM, Chen Y, Dong TTX, Tsim KWK (2018) Complete digestion of edible bird’s nest releases free N-acetylneuraminic acid and small peptides: an efficient method to improve functional properties. Food Funct 9(10):5139–5149. https://doi.org/10.1039/c8fo00991k
Shuko Terazawa HS (2020) Keratinocyte proliferative and wound healing effects of edible bird’s nest extract on human skin. Int J Biomed Sci 16(4):43–51
Fucui Ma DL (2012) Sketch of the edible bird’s nest and its important bioactivities. Food Res Int 48:559–567. https://doi.org/10.1016/j.foodres.2012.06.001
Kim HM, Lee YM, Kim EH, Eun SW, Sung HK, Ko H, Youn SJ, Choi Y, Yamada W, Shin SM (2022) Anti-wrinkle efficacy of edible bird’s nest extract: a randomized, double-blind, placebo-controlled, comparative study. Front Pharmacol 13:843469. https://doi.org/10.3389/fphar.2022.843469
Gromkowska-Kępka KJ, Puścion-Jakubik A, Markiewicz-Żukowska R, Socha K (2021) The impact of ultraviolet radiation on skin photoaging—review of in vitro studies. J Cosmet Dermatol 20(11):3427–3431. https://doi.org/10.1111/jocd.14033
Varani J, Spearman D, Perone P, Fligiel SE, Datta SC, Wang ZQ, Shao Y, Kang S, Fisher GJ, Voorhees JJ (2001) Inhibition of type I procollagen synthesis by damaged collagen in photoaged skin and by collagenase-degraded collagen in vitro. Am J Pathol 158(3):931–942. https://doi.org/10.1016/s0002-9440(10)64040-0
Khan AQ, Travers JB, Kemp MG (2018) Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. Environ Mol Mutagen 59(5):438–460. https://doi.org/10.1002/em.22176
Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Pontén J (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A 88(22):10124–10128. https://doi.org/10.1073/pnas.88.22.10124
Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606. https://doi.org/10.1089/ars.2011.3999
Popko K, Gorska E, Stelmaszczyk-Emmel A, Plywaczewski R, Stoklosa A, Gorecka D, Pyrzak B, Demkow U (2010) Proinflammatory cytokines Il-6 and TNF-α and the development of inflammation in obese subjects. Eur J Med Res 15(Suppl 2):120–122. https://doi.org/10.1186/2047-783x-15-s2-120
Shimada Y, Takehara K, Sato S (2004) Both Th2 and Th1 chemokines (TARC/CCL17, MDC/CCL22, and Mig/CXCL9) are elevated in sera from patients with atopic dermatitis. J Dermatol Sci 34(3):201–208. https://doi.org/10.1016/j.jdermsci.2004.01.001
Palmer CN et al (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38(4):441–446. https://doi.org/10.1038/ng1767
Kong YC, Keung WM, Yip TT, Ko KM, Tsao SW, Ng MH (1987) Evidence that epidermal growth factor is present in swiftlet’s (Collocalia) nest. Comp Biochem Physiol B 87(2):221–226. https://doi.org/10.1016/0305-0491(87)90133-7
Shin SH, Koh YG, Lee WG, Seok J, Park KY (2023) The use of epidermal growth factor in dermatological practice. Int Wound J 20(6):2414–2423. https://doi.org/10.1111/iwj.14075
Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga V (2017) Research techniques made simple: analysis of collective cell migration using the wound healing assay. J Invest Dermatol 137(2):e11–e16. https://doi.org/10.1016/j.jid.2016.11.020
Liang GH, Weber CR (2014) Molecular aspects of tight junction barrier function. Curr Opin Pharmacol 19:84–89. https://doi.org/10.1016/j.coph.2014.07.017
Volksdorf T et al (2017) Tight junction proteins claudin-1 and occludin are important for cutaneous wound healing. Am J Pathol 187(6):1301–1312. https://doi.org/10.1016/j.ajpath.2017.02.006
Frenkel JS (2014) The role of hyaluronan in wound healing. Int Wound J 11(2):159–163. https://doi.org/10.1111/j.1742-481X.2012.01057.x
Kim Y, Lim KM (2021) Skin barrier dysfunction and filaggrin. Arch Pharm Res 44(1):36–48. https://doi.org/10.1007/s12272-021-01305-x
Markiewicz A, Sigorski D, Markiewicz M, Owczarczyk-Saczonek A, Placek W (2021) Caspase-14-from biomolecular basics to clinical approach. A review of available data. Int J Mol Sci. https://doi.org/10.3390/ijms22115575
De Benedetto A et al (2011) Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol 127(3):773-86.e1–7. https://doi.org/10.1016/j.jaci.2010.10.018
Kim BE, Leung DYM (2018) Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res 10(3):207–215. https://doi.org/10.4168/aair.2018.10.3.207
Li J, Feng L, Liu L, Wang F, Ouyang L, Zhang L, Hu X, Wang G (2021) Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem 224:113744. https://doi.org/10.1016/j.ejmech.2021.113744
Pillaiyar T, Manickam M, Jung SH (2017) Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal 40:99–115. https://doi.org/10.1016/j.cellsig.2017.09.004