Lợi ích tiềm năng cho da từ tổ yến ăn được

Jennifer Wang1,2, Paras Patel2,3, Jessica Mineroff2,1, Jared Jagdeo1,2
1Department of Dermatology, State University of New York, Downstate Health Sciences University, SUNY Downstate Medical Center, Brooklyn, USA
2Dermatology Service, Veterans Affairs New York Harbor Healthcare System-Brooklyn Campus, Brooklyn, USA
3Rowan University School of Osteopathic Medicine, Stratford, USA

Tóm tắt

Tổ yến ăn được (EBN) được hình thành từ nước bọt rắn của loài chim yến. EBN đã nổi tiếng trong văn hóa châu Á suốt nhiều thế kỷ. Chúng thường được tiêu thụ như một món ngon trong dạng súp tổ yến và được cho là có nhiều lợi ích cho da. Với sự gia tăng phổ biến của EBN và tầm quan trọng văn hóa đáng kể, chúng tôi nhằm mục đích cung cấp một bài tổng quan toàn diện về các lợi ích tiềm năng cho da của EBN cũng như vai trò của nó trong chống lão hóa do ánh sáng, giảm viêm, làm lành vết thương, tăng cường hàng rào da và làm trắng da. Mặc dù các kết quả nghiên cứu trong ống nghiệm, trên cơ thể sống và các thử nghiệm lâm sàng sơ bộ đều đầy hứa hẹn, nhưng còn cần có nghiên cứu lâm sàng trên người trong tương lai để xác thực thêm các kết quả này và xác lập hiệu quả cũng như tính an toàn của EBN trong các ứng dụng da liễu.

Từ khóa

#tổ yến ăn được #lợi ích cho da #chống lão hóa #giảm viêm #làm lành vết thương #hàng rào da #làm trắng da

Tài liệu tham khảo

Marcone MF (2005) Characterization of the edible bird’s nest the “Caviar of the East.” Food Res Int. https://doi.org/10.1016/j.foodres.2005.02.008 Chok KC, Ng MG, Ng KY, Koh RY, Tiong YL, Chye SM (2021) Edible bird’s nest: recent updates and industry insights based on laboratory findings. Front Pharmacol 12:746656. https://doi.org/10.3389/fphar.2021.746656 Siegel DM, Jakus J, Hooper D (2019) Topical natural products in managing dermatologic conditions: observations and recommendations. Cutis 103(4):233-236.e1-e2 Lee TH, Wani WA, Lee CH, Cheng KK, Shreaz S, Wong S, Hamdan N, Azmi NA (2021) Edible bird’s nest: the functional values of the prized animal-based bioproduct from Southeast Asia—a review. Front Pharmacol 12:626233. https://doi.org/10.3389/fphar.2021.626233 Lim J, Wong M, Chan MY, Tan AM, Rajalingam V, Lim LP, Lou J, Tan CL (2006) Use of complementary and alternative medicine in paediatric oncology patients in Singapore. Ann Acad Med Singap 35(11):753–758 Chow WH, Chang P, Lee SC, Wong A, Shen HM, Verkooijen HM (2010) Complementary and alternative medicine among Singapore cancer patients. Ann Acad Med Singap 39(2):129–135 Wong RS (2013) Edible bird’s nest: food or medicine? Chin J Integr Med 19(9):643–649. https://doi.org/10.1007/s11655-013-1563-y Chye SM, Tai SK, Koh RY, Ng KY (2017) A mini review on medicinal effects of edible bird’s nest. Lett Health Biol Sci. 2(1):65–67. https://doi.org/10.15436/2475-6245.17.016 Eunson Hwang SWP, Yang J-E (2020) Anti-aging, anti-inflammatory, and wound-healing activities of edible bird’s nest in human skin keratinocytes and fibroblasts. Pharmacogn Mag 69:336–342. https://doi.org/10.4103/pm.pm_326_19 Wang D, Shimamura N, Mochizuki M, Nakahara T, Sunada K, Xiao L (2023) Enzyme-digested edible bird’s nest (EBND) prevents UV and arid environment-induced cellular oxidative stress cell death and DNA damage in human skin keratinocytes and three-dimensional epithelium equivalents. Antioxidants (Basel). https://doi.org/10.3390/antiox12030609 Masuda S, Makioka-Itaya Y, Ijichi T, Tsukahara T (2022) Edible bird’s nest extract downregulates epidermal apoptosis and helps reduce damage by ultraviolet radiation in skin of hairless mice. J Clin Biochem Nutr 70(1):33–36. https://doi.org/10.3164/jcbn.21-54 Kim OK, Kim D, Lee M, Park SH, Yamada W, Eun S, Lee J (2021) Standardized edible bird’s nest extract prevents UVB irradiation-mediated oxidative stress and photoaging in the skin. Antioxidants (Basel). https://doi.org/10.3390/antiox10091452 Park S, Kim IS, Park SY, Seo SA, Yang JE, Hwang E (2022) The protective effect of edible bird’s nest against the immune-senescence process of UVB-irradiated hairless mice. Photochem Photobiol 98(4):949–957. https://doi.org/10.1111/php.13564 Lai QWS, Fan Q, Zheng BZ, Chen Y, Dong TT, Tsim KWK (2022) Edible bird’s nest, an Asian health food supplement, possesses anti-inflammatory responses in restoring the symptoms of atopic dermatitis: an analysis of signaling cascades. Front Pharmacol 13:941413. https://doi.org/10.3389/fphar.2022.941413 Sandi DAD, Musfirah Y (2019) Wound healing effects of edible bird’s nests oinment (Aerodramus fuciphagus) in alloxan-induced male rats. Trad Med J. 24(1):33–39. https://doi.org/10.22146/mot.39072 Lai QWS, Guo MSS, Wu KQ, Liao Z, Guan D, Dong TT, Tong P, Tsim KWK (2021) Edible bird’s nest, an Asian health food supplement, possesses moisturizing effect by regulating expression of filaggrin in skin keratinocyte. Front Pharmacol 12:685982. https://doi.org/10.3389/fphar.2021.685982 Sandi DAD, Susiani EF (2021) Formulation of edible bird’s nest (Aerodramus fuciphagus) from central Kalimantan as skin whitening and moisturizing cream. J Pharm Bioallied Sci 13(1):39–45. https://doi.org/10.4103/jpbs.JPBS_276_19 Chan GKL, Wong ZCF, Lam KYC, Cheng LKW, Lin H, Zhang LM, Dong TT, Tsim KWK (2015) Edible bird’s nest, an Asian health food supplement, possesses skin lightening activities: identification of N-acetylneuraminic acid as active ingredient. J Cosmet Dermatol Sci Appl. 5:262–274. https://doi.org/10.4236/jcdsa.2015.54032 Fan Q, Lian J, Liu X, Zou F, Wang X, Chen M (2021) A study on the skin whitening activity of digesta from edible bird’s nest: a mucin glycoprotein. Gels. https://doi.org/10.3390/gels8010024 Wong ZCF, Chan GKL, Wu KQY, Poon KKM, Chen Y, Dong TTX, Tsim KWK (2018) Complete digestion of edible bird’s nest releases free N-acetylneuraminic acid and small peptides: an efficient method to improve functional properties. Food Funct 9(10):5139–5149. https://doi.org/10.1039/c8fo00991k Shuko Terazawa HS (2020) Keratinocyte proliferative and wound healing effects of edible bird’s nest extract on human skin. Int J Biomed Sci 16(4):43–51 Fucui Ma DL (2012) Sketch of the edible bird’s nest and its important bioactivities. Food Res Int 48:559–567. https://doi.org/10.1016/j.foodres.2012.06.001 Kim HM, Lee YM, Kim EH, Eun SW, Sung HK, Ko H, Youn SJ, Choi Y, Yamada W, Shin SM (2022) Anti-wrinkle efficacy of edible bird’s nest extract: a randomized, double-blind, placebo-controlled, comparative study. Front Pharmacol 13:843469. https://doi.org/10.3389/fphar.2022.843469 Gromkowska-Kępka KJ, Puścion-Jakubik A, Markiewicz-Żukowska R, Socha K (2021) The impact of ultraviolet radiation on skin photoaging—review of in vitro studies. J Cosmet Dermatol 20(11):3427–3431. https://doi.org/10.1111/jocd.14033 Varani J, Spearman D, Perone P, Fligiel SE, Datta SC, Wang ZQ, Shao Y, Kang S, Fisher GJ, Voorhees JJ (2001) Inhibition of type I procollagen synthesis by damaged collagen in photoaged skin and by collagenase-degraded collagen in vitro. Am J Pathol 158(3):931–942. https://doi.org/10.1016/s0002-9440(10)64040-0 Khan AQ, Travers JB, Kemp MG (2018) Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. Environ Mol Mutagen 59(5):438–460. https://doi.org/10.1002/em.22176 Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Pontén J (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A 88(22):10124–10128. https://doi.org/10.1073/pnas.88.22.10124 Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606. https://doi.org/10.1089/ars.2011.3999 Popko K, Gorska E, Stelmaszczyk-Emmel A, Plywaczewski R, Stoklosa A, Gorecka D, Pyrzak B, Demkow U (2010) Proinflammatory cytokines Il-6 and TNF-α and the development of inflammation in obese subjects. Eur J Med Res 15(Suppl 2):120–122. https://doi.org/10.1186/2047-783x-15-s2-120 Shimada Y, Takehara K, Sato S (2004) Both Th2 and Th1 chemokines (TARC/CCL17, MDC/CCL22, and Mig/CXCL9) are elevated in sera from patients with atopic dermatitis. J Dermatol Sci 34(3):201–208. https://doi.org/10.1016/j.jdermsci.2004.01.001 Palmer CN et al (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38(4):441–446. https://doi.org/10.1038/ng1767 Kong YC, Keung WM, Yip TT, Ko KM, Tsao SW, Ng MH (1987) Evidence that epidermal growth factor is present in swiftlet’s (Collocalia) nest. Comp Biochem Physiol B 87(2):221–226. https://doi.org/10.1016/0305-0491(87)90133-7 Shin SH, Koh YG, Lee WG, Seok J, Park KY (2023) The use of epidermal growth factor in dermatological practice. Int Wound J 20(6):2414–2423. https://doi.org/10.1111/iwj.14075 Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga V (2017) Research techniques made simple: analysis of collective cell migration using the wound healing assay. J Invest Dermatol 137(2):e11–e16. https://doi.org/10.1016/j.jid.2016.11.020 Liang GH, Weber CR (2014) Molecular aspects of tight junction barrier function. Curr Opin Pharmacol 19:84–89. https://doi.org/10.1016/j.coph.2014.07.017 Volksdorf T et al (2017) Tight junction proteins claudin-1 and occludin are important for cutaneous wound healing. Am J Pathol 187(6):1301–1312. https://doi.org/10.1016/j.ajpath.2017.02.006 Frenkel JS (2014) The role of hyaluronan in wound healing. Int Wound J 11(2):159–163. https://doi.org/10.1111/j.1742-481X.2012.01057.x Kim Y, Lim KM (2021) Skin barrier dysfunction and filaggrin. Arch Pharm Res 44(1):36–48. https://doi.org/10.1007/s12272-021-01305-x Markiewicz A, Sigorski D, Markiewicz M, Owczarczyk-Saczonek A, Placek W (2021) Caspase-14-from biomolecular basics to clinical approach. A review of available data. Int J Mol Sci. https://doi.org/10.3390/ijms22115575 De Benedetto A et al (2011) Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol 127(3):773-86.e1–7. https://doi.org/10.1016/j.jaci.2010.10.018 Kim BE, Leung DYM (2018) Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res 10(3):207–215. https://doi.org/10.4168/aair.2018.10.3.207 Li J, Feng L, Liu L, Wang F, Ouyang L, Zhang L, Hu X, Wang G (2021) Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem 224:113744. https://doi.org/10.1016/j.ejmech.2021.113744 Pillaiyar T, Manickam M, Jung SH (2017) Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal 40:99–115. https://doi.org/10.1016/j.cellsig.2017.09.004