The pointwise James type constant
Tóm tắt
In 2008, Takahashi introduced the James type constants. We discuss here the pointwise James type constant: for all x ∈ X, ∥x∥ = 1,
We show that in almost transitive Banach spaces, the map x ∈ X, ∥x∥ = 1 ↦ J(x, X, t) is constant. As a consequence and having in mind the Mazur’s rotation problem, we prove that for almost transitive Banach spaces, the condition
$$J(x,X,t) = \sqrt 2 $$
for some unit vector x ∈ X implies that X is Hilbert.
Tài liệu tham khảo
F. Albiac and N. J. Kalton, Topics in Banach Space Theory, 2nd ed., Graduate Texts in Mathematics, vol. 233, Springer (Cham, 2016).
J. Alonso and E. Llorens-Fuster, Geometric mean and triangles inscribed in a semicircle in Banach spaces, J. Math. Anal. Appl., 340 (2008), 1271–1283.
H. Auerbach, Sur les groupes linéaires bornés I, II, III, Studia Math., 4 (1933), 113–127, 158–166, 5 (1934), 43–49.
M. Baronti, E. Casini and P. L. Papini, Triangles inscribed in a semicircle, in Minkowski planes, and in normed spaces, J. Math. Anal. Appl., 252 (2000), 124–146.
E. Casini, About some parameters of normed linear spaces Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 80 (1986), 11–15.
J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414.
D. Ji, J. Li and S. Wu, On the uniqueness of isosceles orthogonality in normed linear spaces, Results Math., 59 (2011), 157–162.
J. Gao and K.-S. Lau, On the geometry of spheres in normed linear spaces, J. Austral. Math. Soc. Ser. A, 48 (1990), 101–112.
J. Gao, A Pythagorean approach in Banach spaces, J. Inequal. Appl. (2006), Article ID 94982, 11 pp.
N. Komuro, K.-S. Saito and R. Tanaka, On the class of Banach spaces with James constant \(\sqrt 2 \), Math. Nachr., 289 (2016), 1005–1020.
H. Martini and S. Wu, Orthogonalities, transitivity of norms and characterizations of Hilbert spaces, Rocky Mountain J. Math., 45 (2015), 287–301.
K.-I. Mitani and K.-S. Saito, The James constant of absolute norms on ℝ2, J. Nonlinear Convex Anal., 4 (2003), 399–410.
Y. Takahashi, Some geometric constants of Banach spaces—a unified approach, in: Banach and Function Spaces II, Yokohama Publ. (Yokohama, 2008), pp. 191–220.
X.-W. Tang, D.-H. Ji and S.-X. Wang, Pointwise nonsquare constant in normed space, Acta Anal. Funct. Appl., 6 (2004), 10–15.
C. Yang and Y. Wang, Some properties of James type constant, Appl. Math. Lett., 25 (2012), 538–544.